【題目】如圖,某建筑物BC上有一旗桿AB,小明在與BC相距12mF處,由E點(diǎn)觀測到旗桿頂部A的仰角為52°、底部B的仰角為45°,小明的觀測點(diǎn)與地面的距離EF.6m

求建筑物BC的高度;

求旗桿AB的高度.(結(jié)果精確到0.1m.參考數(shù)據(jù):≈1.41,sin52°≈0.79tan52°≈1.28

【答案】1)建筑物BC的高度為13.6m

2)旗桿AB的高度約為3.4m

【解析】

1)先過點(diǎn)EED⊥BCD,由已知底部B的仰角為45°BD=ED=FC=12,DC=EF=1.6,從而求出BC

2)由已知由E點(diǎn)觀測到旗桿頂部A的仰角為52°可求出AD,則AB=AD-BD

解:(1)過點(diǎn)EED⊥BCD

根據(jù)題意得:EF⊥FC,ED∥FC

四邊形CDEF是矩形,

已知底部B的仰角為45°∠BED=45°

∴∠EBD=45°

∴BD=ED=FC=12,

∴BC=BD+DC=BD+EF=12+1.6=13.6

答:建筑物BC的高度為13.6m

2)已知由E點(diǎn)觀測到旗桿頂部A的仰角為52°,即∠AED=52°,

∴AD=EDtan52°

≈12×1.28≈15.4,

∴AB=AD-BD=15.4-12=3.4

答:旗桿AB的高度約為3.4m

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在菱形ABCD,BAD=60°,AB為直徑的⊙O分別交邊AD和對(duì)角線BD于點(diǎn)E、F,連接EF并延長交邊BC于點(diǎn)G,連接BE。

(1)求證:AE=DE;

(2)若⊙O的半徑為2,EG的長

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線a,b,c是常數(shù),且)與x軸交于A、B兩點(diǎn),頂點(diǎn)Pm,n),下列結(jié)論中,其中正確的有( 。

;②若在拋物線上,則;③關(guān)于x的方程有實(shí)數(shù)解,則;④當(dāng)時(shí),ABP為等腰直角三角形

A.①②B.③④C.②④D.②③

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,在ABC中,ABAC,∠BAC90°,D、E分別是AB、AC邊的中點(diǎn).將ABC繞點(diǎn)A順時(shí)針旋轉(zhuǎn)a角(a180°),得到AB′C′(如圖2),連接DB'EC'

1)探究DB'EC'的數(shù)量關(guān)系,并結(jié)合圖2給予證明;

2)填空:

①當(dāng)旋轉(zhuǎn)角α的度數(shù)為_____時(shí),則DB'AE

②在旋轉(zhuǎn)過程中,當(dāng)點(diǎn)B',DE在一條直線上,且AD時(shí),此時(shí)EC′的長為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】若一個(gè)三角形一條邊的平方等于另兩條邊的乘積,我們把這個(gè)三角形叫做比例三角形,例如△ABC中,三邊分別為ab、c,若滿足b2ac,則稱△ABC為比例三角形,其中b為比例中項(xiàng).

1)已知△ABC是比例三角形,AB2,BC3,請(qǐng)直接寫出所有滿足條件的AC的長;

2)如圖,在四邊形ABCD中,ADBC,對(duì)角線BD平分∠ABC,∠BAC=∠ADC

①請(qǐng)直接寫出圖中的比例三角形;

②作AHBD,當(dāng)∠ADC90°時(shí),求的值;

3)三邊長分別為ab、c的三角形是比例三角形,且b為比例中項(xiàng),已知拋物線yax2+bx+cy軸交于點(diǎn)B,頂點(diǎn)為A,O為坐標(biāo)原點(diǎn),以OB為直徑的⊙M經(jīng)過點(diǎn)A,記△OAB的面積為S1,⊙M的面積為S2,試問S1S2的值是否為定值?若是請(qǐng)求出定值,若不是請(qǐng)求出S1S2的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖RtABC,C=90°點(diǎn)DBC邊的中點(diǎn),BD=2,tanB=

1)求ADAB的長;

2)求sin∠BAD的值

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】RtABC C=90°,a b 、c 分別為∠A 、∠B 、∠C的對(duì)邊,a、 b是關(guān)于的方程的兩根,那么AB邊上的中線長是()

A.B.C.5D.25

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,AB是半圓O的直徑,C是AB延長線上的點(diǎn),AC的垂直平分線交半圓于點(diǎn)D,交AC于點(diǎn)E,連接DA,DC.已知半圓O的半徑為3,BC=2.

(1)求AD的長.

(2)點(diǎn)P是線段AC上一動(dòng)點(diǎn),連接DP,作∠DPF=∠DAC,PF交線段CD于點(diǎn)F.當(dāng)DPF為等腰三角形時(shí),求AP的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在一個(gè)不透明的袋子里有1個(gè)紅球,1個(gè)黃球和n個(gè)白球,它們除顏色外其余都相同.

(1)從這個(gè)袋子里摸出一個(gè)球,記錄其顏色,然后放回,搖均勻后,重復(fù)該實(shí)驗(yàn),經(jīng)過大量實(shí)驗(yàn)后,發(fā)現(xiàn)摸到白球的頻率穩(wěn)定于0.5左右,求n的值;

(2)在(1)的條件下,先從這個(gè)袋中摸出一個(gè)球,記錄其顏色,放回,搖均勻后,再從袋中摸出一個(gè)球,記錄其顏色.請(qǐng)用畫樹狀圖或者列表的方法,求出先后兩次摸出不同顏色的兩個(gè)球的概率.

查看答案和解析>>

同步練習(xí)冊(cè)答案