【題目】如圖,分別是可活動的菱形和平行四邊形學具,已知平行四邊形較短的邊與菱形的邊長相等.
(1)在一次數學活動中,某小組學生將菱形的一邊與平行四邊形較短邊重合,擺拼成如圖1所示的圖形,AF經過點C,連接DE交AF于點M,觀察發(fā)現:點M是DE的中點.
下面是兩位學生有代表性的證明思路:
思路1:不需作輔助線,直接證三角形全等;
思路2:不證三角形全等,連接BD交AF于點H.…
請參考上面的思路,證明點M是DE的中點(只需用一種方法證明);
(2)如圖2,在(1)的前提下,當∠ABE=135°時,延長AD、EF交于點N,求的值;
(3)在(2)的條件下,若=k(k為大于的常數),直接用含k的代數式表示的值.
【答案】(1)證明見解析;(2);(3).
【解析】試題分析:(1)證法一,利用菱形性質得AB=CD,AB∥CD,利用平行四邊形的性質得AB=EF,AB∥EF,則CD=EF,CD∥EF,再根據平行線的性質得∠CDM=∠FEM,則可根據“AAS”判斷△CDM≌△FEM,所以DM=EM;
證法二,利用菱形性質得DH=BH,利用平行四邊形的性質得AF∥BE,再根據平行線分線段成比例定理得到=1,所以DM=EM;
(2)由△CDM≌△FEM得到CM=FM,設AD=a,CM=b,則FM=b,EF=AB=a,再證明四邊形ABCD為正方形得到AC=a,接著證明△ANF為等腰直角三角形得到NF=a+b,則NE=NF+EF=2a+b,然后計算的值;
(3)由于= ==k,則 =,然后表示出 ==,再把 =代入計算即可.
試題解析:解:(1)如圖1,證法一:∵四邊形ABCD為菱形,∴AB=CD,AB∥CD,∵四邊形ABEF為平行四邊形,∴AB=EF,AB∥EF,∴CD=EF,CD∥EF,∴∠CDM=∠FEM,在△CDM和△FEM中,∵∠CMD=∠FME,∠CDM=∠FEM,CD=EF,∴△CDM≌△FEM,∴DM=EM,即點M是DE的中點;
證法二:∵四邊形ABCD為菱形,∴DH=BH,∵四邊形ABEF為平行四邊形,∴AF∥BE,∵HM∥BE,∴ =1,∴DM=EM,即點M是DE的中點;
(2)∵△CDM≌△FEM,∴CM=FM,設AD=a,CM=b,∵∠ABE=135°,∴∠BAF=45°,∵四邊形ABCD為菱形,∴∠NAF=45°,∴四邊形ABCD為正方形,∴AC=AD=a,∵AB∥EF,∴∠AFN=∠BAF=45°,∴△ANF為等腰直角三角形,∴NF=AF=(a+b+b)=a+b,∴NE=NF+EF=a+b+a=2a+b,∴ = =;
(3)∵= ==k,∴=,∴ =,∴ == ==.
科目:初中數學 來源: 題型:
【題目】在如圖的方格中,每個小方格都是邊長為1的正方形,△ABC的三個頂點都在格點上;
(1)建立適當的平面直角坐標系,使A(﹣2,﹣1),C(1,﹣1),寫出B點坐標;
(2)在(1)的條件下,將△ABC向右平移4個單位再向上平移2個單位,在圖中畫出平移后的△A′B′C′,并分別寫出A′、B′、C′的坐標;
(3)求△ABC的面積.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,圖1中ΔABC是等邊三角形,DE是中位線,F是線段BC延長線上一點,且CF=AE,連接BE,EF.
圖1 圖2
(1)求證:BE=EF;
(2)若將DE從中位線的位置向上平移,使點D、E分別在線段AB、AC上(點E與點A不重合),其他條件不變,如圖2,則(1)題中的結論是否成立?若成立,請證明;若不成立.請說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖①,在四邊形ABCD中,∠A=x°,∠C=y°(0°<x<180°,0°<y<180°).
(1)∠ABC+∠ADC= °.(用含x,y的代數式表示)
(2)如圖1,若x=y=90°,DE平分∠ADC,BF平分與∠ABC相鄰的外角,請寫出DE與BF的位置關系,并說明理由.
(3)如圖2,∠DFB為四邊形ABCD的∠ABC、∠ADC相鄰的外角平分線所在直線構成的銳角,
①當x<y時,若x+y=140°,∠DFB=30°,試求x、y.
②小明在作圖時,發(fā)現∠DFB不一定存在,請直接指出x、y滿足什么條件時,∠DFB不存在.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】某公司有A、B兩種型號的客車共20輛,它們的載客量、每天的租金如表所示.已知在20輛客車都坐滿的情況下,共載客720人.
A型號客車 | B型號客車 | |
載客量(人/輛) | 45 | 30 |
租金(元/輛) | 600 | 450 |
(1)求A、B兩種型號的客車各有多少輛?
(2)某中學計劃租用A、B兩種型號的客車共8輛,同時送七年級師生到沙家浜參加社會實踐活動,已知該中學租車的總費用不超過4600元.
①求最多能租用多少輛A型號客車?
②若七年級的師生共有305人,請寫出所有可能的租車方案,并確定最省錢的租車方案.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在平面直角坐標系中,將坐標原點O沿x軸向左平移2個單位長度得到點A,過點A作y軸的平行線交反比例函數的圖象于點B,AB=.
(1)求反比例函數的解析式;
(2)若P(, )、Q(, )是該反比例函數圖象上的兩點,且時, ,指出點P、Q各位于哪個象限?并簡要說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,2×2網格(每個小正方形的邊長為1)中有A,B,C,D,E,F,G,H,O九個格點.拋物線l的解析式為y=(-1)nx2+bx+c(n為整數).
(1)n為奇數,且l經過點H(0,1)和C(2,1),求b,c的值,并直接寫出哪個格點是該拋物線上的頂點;
(2)n為偶數,且l經過點A(1, 0)和B(2,0),通過計算說明點F(0,2)和H(0,1)是否在拋物線上;
(3)若l經過這九個格點中的三個,直接寫出滿足這樣條件的拋物線條數.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,點B的坐標是(0,1),AB⊥y軸,垂足為B,點A在直線y=x,將△ABO繞點A順時針旋轉到△AB1O1的位置,使點B的對應點B1落在直線y=x上,再將△AB1O1繞點B1順時針旋轉到△A1B1O2的位置,使點O1的對應點O2落在直線y=x上,依次進行下去…,則點O100的縱坐標是_____.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com