【題目】已知直角坐標(biāo)平面內(nèi)兩點A(-2,-3)、B(3,-3),將點B向上平移5個單位到達(dá)點C,求:
(1)A、B兩點間的距離;
(2)寫出點C的坐標(biāo);
(3)四邊形OABC的面積.
【答案】(1) 5;(2) (3,2);(3)15.
【解析】
(1)A、B兩點的橫坐標(biāo)差的絕對值即為A、B兩點間的距離;
(2)將點B的橫坐標(biāo)不變,縱坐標(biāo)加5即可求出點C的坐標(biāo);
(3)四邊形OABC的面積等于三角形ODC面積與梯形OABD的面積之和.
(1)因為點A(-2,-3)、點B(3,-3),所以AB=3-(-2)=5;
(2)因為點B(3,-3),將點B向上平移5個單位到達(dá)點C,所以點C的坐標(biāo)為(3,2);
(3)如圖,
設(shè)BC與x軸交于點D,
則S四邊形OABC=S三角形ODC+S梯形OABD=×3×2+(3+5)×3=3+12=15.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(定義)數(shù)學(xué)課上,陳老師對我們說,如果1條線段將一個三角形分成2個等腰三角形,那么這1條線段就稱為這個三角形的“好線”,如果2條線段將一個三角形分成3個等腰三角形,那么這2條線段就稱為這個三角形的“好好線”.
(理解)如圖①,在△ABC中,∠A=36°,∠C=72°,請你在這個三角形中畫出它的“好線”,并標(biāo)出等腰三角形頂角的度數(shù).
如圖②,已知△ABC是一個頂角為45°的等腰三角形,請你在這個三角形中畫出它的“好好線”,并標(biāo)出所分得的等腰三角形底角的度數(shù).
(應(yīng)用)
(1)在△ABC中,已知一個內(nèi)角為42°,若它只有“好線”,請你寫出這個三角形最大內(nèi)角的所有可能值______;
(2)在△ABC中,∠C=27°,AD和DE分別是△ABC的“好好線”,點D在BC邊上,點E在AB邊上,且AD=DC,BE=DE,請你根據(jù)題意畫出示意圖,并求∠B的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,四邊形ABCD中,AC=a,BD=b,且AC⊥BD,順次連接四邊形ABCD各邊的中點,得到四邊形A1B1C1D1,再順次連接四邊形A1B1C1D1各邊的中點,得到四邊形A2B2C2D2;…;如此進(jìn)行下去,得到四邊形A7B7C7D7,那么四邊A7B7C7D7形的周長為______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,四邊形ABCD為平行四邊形,∠BAD的角平分線AE交CD于點F,交BC的延長線于點E.
(1)求證:BE=CD;
(2)連接BF,若BF⊥AE,∠BEA=60°,AB=4,求平行四邊形ABCD的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】一次函數(shù)y=ax+b(a≠0)的圖象與反比例函數(shù)y= (k≠0)的圖象相交于A,B兩點,與y軸交于點C,與x軸交于點D,點D的坐標(biāo)為(﹣1,0),點A的橫坐標(biāo)是1,tan∠CDO=2.過點B作BH⊥y軸交y軸于H,連接AH.
(1)求一次函數(shù)和反比例函數(shù)的解析式;
(2)求△ABH面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】甲、乙兩家草莓采摘園的草莓品質(zhì)相同,銷售價格也相同.“五一期間”,兩家均推出了優(yōu)惠方案,甲采摘園的優(yōu)惠方案是:游客進(jìn)園需購買50元的門票,采摘的草莓六折優(yōu)惠;乙采摘園的優(yōu)惠方案是:游客進(jìn)園不需購買門票,采摘園的草莓超過一定數(shù)量后,超過部分打折優(yōu)惠.優(yōu)惠期間,設(shè)某游客的草莓采摘量為x(千克),在甲采摘園所需總費用為(元),在乙采摘園所需總費用為(元),圖中折線OAB表示與x之間的函數(shù)關(guān)系.
(1)甲、乙兩采摘園優(yōu)惠前的草莓銷售價格是每千克 元;
(2)求、與x的函數(shù)表達(dá)式;
(3)在圖中畫出與x的函數(shù)圖象,并寫出選擇甲采摘園所需總費用較少時,草莓采摘量x的范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】填寫理由:
已知:如圖,ABC是直線,∠1=115°,∠D=65°.
求證:AB∥DE.
證明:∵ABC是一直線,(已知)
∴∠1+∠2=180°( )
∵∠1=115°(已知)
∴∠2=65°
又∵∠D=65°(已知)
∴∠2=∠D
∴ ∥ ( )
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系xOy中,拋物線y=﹣ x2 x與x軸交于O,A,點B在拋物線上且橫坐標(biāo)為2.
(1)如圖1,△AOB的面積是多少?
(2)如圖1,在線段AB上方的拋物線上有一點K,當(dāng)△ABK的面積最大時,求點K的坐標(biāo)及△ABK的面積;
(3)在(2)的條件下,點H 在y軸上運動,點I在x軸上運動.則當(dāng)四邊形BHIK周長最小時,求出H、I的坐標(biāo)以及四邊形BHIK周長的最小值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在同一平面內(nèi),若有條直線,則最多有______個交點;若條直線中恰好有且只有條直線互相平行,則這條直線最多有_____個交點(用含有的式子表示).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com