如圖,在邊長為1的等邊△ABC中,中線AD與中線BE相交于點O,則OA長度為   
【答案】分析:根據(jù)等邊三角形三線合一的特點及直角三角形的性質(zhì)解答即可.
解答:解:∵△ABC是等邊三角形,AD、BE為中線;
∴BD=AE=,∠ABE=∠BAD=30°,∠AEB=∠ADB=90°;
∴AD=BE=AB•sin60°=;
在Rt△BOD中,BD=,∠DBO=30°;
∴OD=BD•tan30°=×=
∴OA=AD-OD=-=
故OA的長度為
點評:此題比較簡單,解答此題的關(guān)鍵是熟知等邊三角形三線合一的性質(zhì).
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,在邊長為1的等邊三角形ABC中,若將兩條含120°圓心角的
AOB
BOC
及邊AC所圍成的陰影部分的面積記為S,則S與△ABC面積的比等于( 。
A、
1
2
B、
1
3
C、
1
4
D、
1
6

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,在邊長為4的等邊三角形ABC中,AD是BC邊上的高,點E,F(xiàn)是AD上的兩點,則圖中陰影部分的面積是( 。
A、4
3
B、3
3
C、2
3
D、
3

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,在邊長為20cm的等邊三角形ABC紙片中,以頂點C為圓心,以此三角形的高為半徑畫弧分別交AC、BC于點D、E,則扇形CDE所圍的圓錐(不計接縫)的底圓半徑為(  )
A、
5
3
3
cm
B、
10
3
3
cm
C、5
3
cm
D、10
3
cm

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在邊長為2的等邊△ABC中,AD⊥BC,點P為邊AB上一個動點,過P點作PF∥AC交線段BD于點F,作PG⊥AB精英家教網(wǎng)交AD于點E,交線段CD于點G,設(shè)BP=x.
(1)試判斷BG與2BP的大小關(guān)系,并說明理由;
(2)用x的代數(shù)式表示線段DG的長,并寫出自變量x的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2013•武漢模擬)如圖,在邊長為1的等邊△OAB中,以邊AB為直徑作⊙D,以O(shè)為圓心OA長為半徑作圓O,C為半圓AB上不與A、B重合的一動點,射線AC交⊙O于點E,BC=a,AC=b.
(1)求證:AE=b+
3
a;
(2)求a+b的最大值;
(3)若m是關(guān)于x的方程:x2+
3
ax=b2+
3
ab的一個根,求m的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案