【題目】如圖,在△ABC中,∠BAC=90°,AB=AC,點(diǎn)P為線段AC上一點(diǎn),點(diǎn)Q在線段AB的延長線上,CP=BQ,連接PQ交BC于點(diǎn)D,點(diǎn)P關(guān)于BC的對(duì)稱點(diǎn)為E,連接AE.
(1)依題意補(bǔ)全圖1;
(2)求證:D是PQ的中點(diǎn);
(3)用等式表示AE和PQ的數(shù)量關(guān)系,并證明.
【答案】(1)見解析;(2)見解析;(3),理由見解析
【解析】
(1)根據(jù)題意畫圖即可;
(2)連接EQ,過點(diǎn)D作DF⊥EQ,設(shè)PE及哦啊BC于點(diǎn)G,先證四邊形CEQB是平行四邊形,得到BC∥EQ,再求∠PEQ=90°得到四邊形EGDF是矩形,根據(jù)對(duì)稱證得DF=PE,得到DF是△PEQ的中位線,由此得到結(jié)論;
(3)設(shè)AP=a,PC=CE=b,利用勾股定理求出,,即可得到結(jié)論.
(1)如圖:
(2)連接EQ,過點(diǎn)D作DF⊥EQ,設(shè)PE交BC于點(diǎn)G,
∵AB=AC,∠BAC=90°,
∴∠ACB=∠ABC=45°,
∵點(diǎn)P關(guān)于BC的對(duì)稱點(diǎn)為E,
∴∠BCE=∠ACB=∠ABC=45°,PC=CE,
∴CE∥AB,
∵BQ=PC=CE,
∴四邊形CEQB是平行四邊形,
∴BC∥EQ,
∴∠CEQ=∠CBQ=180°-45°=135°,
∵∠PCE=45°+45°=90°,PC=CE,
∴∠CEP=45°,
∴∠PEQ=90°,即PE⊥EQ,
∵DF⊥EQ,
∴PE∥DF,
∴四邊形EGDF是平行四邊形,
∵∠GEF=90°,
∴四邊形EGDF是矩形,
∴DF=EG,
由對(duì)稱得PG=EG,
∴DF=PE,
∴DF是△PEQ的中位線,
∴點(diǎn)D是PQ的中點(diǎn);
(3);
設(shè)AP=a,PC=CE=b,
在Rt△ACE中,,
∴;
在Rt△PEQ中,,
∵, ,
∴,
∴,
∴.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在中,,于點(diǎn),,為了研究圖中線段之間的關(guān)系,設(shè),,
(1)可通過證明,得到關(guān)于的函數(shù)表達(dá)式__________,其中自變量的取值范圍是___________;
(2)根據(jù)圖中給出的(1)中函數(shù)圖象上的點(diǎn),畫出該函數(shù)的圖象;
(3)借助函數(shù)圖象,回答下列問題:①的最小值是__________;②已知當(dāng)時(shí),的形狀與大小唯一確定,借助函數(shù)圖象給出的一個(gè)估計(jì)值(精確到0.1)或者借助計(jì)算給出的精確值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為了讓學(xué)生了解環(huán)保知識(shí),增強(qiáng)環(huán)保意識(shí),紅星中學(xué)舉行了一次“環(huán)保知識(shí)競(jìng)賽”,共有900名學(xué)生參加了這次競(jìng)賽.為了解本次競(jìng)賽成績(jī)情況,從中抽取了部分學(xué)生的成績(jī)(得分取正整數(shù),滿分為100分)進(jìn)行統(tǒng)計(jì).請(qǐng)你根據(jù)下面尚未完成并有局部污損的頻率分布表和頻率分布直方圖,解答下列問題:
(1)填充頻率分布表中的空格;
(2)補(bǔ)全頻率分布直方圖;
(3)在該問題中的樣本容量是多少?
答: .
(4)全體參賽學(xué)生中,競(jìng)賽成績(jī)落在哪組范圍內(nèi)的人數(shù)最多?(不要求說明理由)”
答: .
(5)若成績(jī)?cè)?0分以上(不含90分)為優(yōu)秀,則該校成績(jī)優(yōu)秀的約為多少人?
答: .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】“每天鍛煉一小時(shí),健康生活一輩子”為了選拔“陽光大課間”領(lǐng)操員,學(xué)校組織初中三個(gè)年級(jí)推選出來的名領(lǐng)操員進(jìn)行比賽,成績(jī)?nèi)缦卤恚?/span>
成績(jī)(分) | ||||
人數(shù)(人) |
(1)這組數(shù)據(jù)的眾數(shù)是______,中位數(shù)是_______;
(2)已知獲得分的選手中,七、八、九年級(jí)分別有人、人、人,學(xué)校準(zhǔn)備從中隨機(jī)抽取兩人領(lǐng)操,求恰好抽到八年級(jí)兩名領(lǐng)操員的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖是二次函數(shù)y=ax2+bx+c(a,b,c是常數(shù),a≠0)圖象的一部分,與x軸的交點(diǎn)A在點(diǎn)(2,0)和(3,0)之間,對(duì)稱軸是x=1.對(duì)于下列說法:①ab<0;②2a+b=0;③3a+c>0;④a+b≥m(am+b)(m為實(shí)數(shù));⑤當(dāng)﹣1<x<3時(shí),y>0,其中正確的是( )
A. ①②④ B. ①②⑤ C. ②③④ D. ③④⑤
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某中學(xué)圖書室計(jì)劃購買了甲、乙兩種故事書.若購買7本甲種故事書和4本乙種故事書需510元;購買3本甲種故事書和5本乙種故事書需350元.
(1)求甲種故事書和乙種故事書的單價(jià);
(2)學(xué)校準(zhǔn)備購買甲、乙兩種故事書共200本,且甲種故事書的數(shù)量不少于乙種故事書的數(shù)量的,請(qǐng)?jiān)O(shè)計(jì)出最省錢的購買方案,并說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,∠B=30°,∠C=45°,AD平分∠BAC交BC于點(diǎn)D,DE⊥AB,垂足為E。若DE=1,則BC的長為( )
A.2+B.C.D.3
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】央視熱播節(jié)目“朗讀者”激發(fā)了學(xué)生的閱讀興趣,某校為滿足學(xué)生的閱讀需求,欲購進(jìn)一批學(xué)生喜歡的圖書,學(xué)校組織學(xué)生會(huì)成員隨機(jī)抽取部分學(xué)生進(jìn)行問卷調(diào)查,被調(diào)查學(xué)生須從“文史類、社科類、小說類、生活類”中選擇自己喜歡的一類,根據(jù)調(diào)查結(jié)果繪制了統(tǒng)計(jì)圖(未完成),請(qǐng)根據(jù)圖中信息,解答下列問題
(1)此次共調(diào)查了 名學(xué)生;
(2)將條形統(tǒng)計(jì)圖1補(bǔ)充完整;
(3)圖2中“社科類”所在扇形的圓心角為 度;
(4)若該校共有學(xué)生人,估計(jì)該校喜歡“社科類”書籍的學(xué)生人數(shù).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com