【題目】若直線y=kx+b與直線y=2x平行,且與y軸相交于點(0,–3),則直線的函數(shù)表達式是__________.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,∠ACB=90°,D是AB上一點,且∠ACD=∠B.
(1)求證:CD⊥AB;
(2)在(1)中畫△ABC的角平分線AE,交CD于點F,試判斷∠AEC與∠CFE的數(shù)量關(guān)系,并說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,對于任意三點, , 的“矩面積”,給出如下定義:任意兩點橫坐標(biāo)差的最大值稱為“水平底”,任意兩點縱坐標(biāo)差的最大值稱為“鉛垂高”,“水平底”與“鉛垂高”的乘積為點, , 的“矩面積”,即“矩面積”.
例如:點, , ,它們的“水平底”,“鉛垂高”,“矩面積”.
(1)已知點, , .
①若, , 三點的 “矩面積”為12,寫出點的坐標(biāo): ;
②寫出, , img src="http://thumb.zyjl.cn/questionBank/Upload/2017/12/28/23/79963a76/SYS201712282330522238895478_ST/SYS201712282330522238895478_ST.027.png" width="16" height="19" style="-aw-left-pos:0pt; -aw-rel-hpos:column; -aw-rel-vpos:paragraph; -aw-top-pos:0pt; -aw-wrap-type:inline" />三點的“矩面積”的最小值: .
(2)已知點, , ,
①當(dāng)D,E,F(xiàn)三點的“矩面積”取最小值時,寫出的取值范圍: ;
②若D,E,F(xiàn)三點的“矩面積”為33,求點的坐標(biāo);
③設(shè)D,E,F(xiàn)三點的“矩面積”為,寫出與t的函數(shù)關(guān)系式.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,∠ABD和∠BDC的平分線相交于點E,BE交CD于點F,∠1+∠2=90°.試問直線AB,CD在位置上有什么關(guān)系?∠2與∠3在數(shù)量上有什么關(guān)系?并證明你的猜想.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下列各式中不能用平方差公式計算的是( )
A.(x-2y)(2y+x)
B.(x-2y)(-2y+x)
C.(x+y)(y-x)
D.(2x-3y)(3y+2x)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖在每個小正方形邊長為1的方格紙中,△ABC的頂點都在方格紙格點上.
(1)△ABC的面積為______;
(2)將△ABC經(jīng)過平移后得到△A′B′C′,圖中標(biāo)出了點B的對應(yīng)點B′,補全△A′B′C′;
(3)若連接AA′,BB′,則這兩條線段之間的關(guān)系是______;
(4)在圖中畫出△ABC的高CD.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(1)完成下面的推理說明:
已知:如圖,∥,、分別平分和.
求證:∥.
證明:、分別平分和(已知),
, ( ).
∥( ),
( ).
( ).
(等式的性質(zhì)).
∥( ).
(2)說出(1)的推理中運用了哪兩個互逆的真命題.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】學(xué)校測量了全校800名男生的身高,并進行了分組,已知身高在1.70~1.75(單位:m)這一組的頻率為0.25,則該組共有男生( )
A. 100名B. 200名C. 250名D. 400名
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】拋物線y=2(x-3)2+1的頂點坐標(biāo)是( )
A. (3,1) B. ( 3,-1) C. (-3,1) D. (-3,-1)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com