精英家教網 > 初中數學 > 題目詳情

【題目】給出下面兩個定理:

線段垂直平分線上的點到這條線段兩個端點的距離相等;

到一條線段兩個端點距離相等的點在這條線段的垂直平分線上.

應用上述定理進行如下推理:

如圖,直線l是線段MN的垂直平分線.

A在直線l,AM=AN.(  )

BM=BN,B在直線l.(  )

CMCN,C不在直線l.

這是如果點C在直線l,那么CM=CN, (  )

這與條件CMCN矛盾.

以上推理中各括號內應注明的理由依次是 (  )

A. ②①① B. ②①②

C. ①②② D. ①②①

【答案】D

【解析】解:根據題意,第一個空,由垂直平分線得到線段相等,應用了性質,填;

第二個空,由線段相等得點在直線上,應用了判定,填;

應用了垂直平分線的性質,填

應所以填①②①,故選D

練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

【題目】如圖,已知一條東西走向的河流,在河流對岸有一點A,小明在岸邊點B處測得點A在點B的北偏東30°方向上,小明沿河岸向東走80m后到達點C,測得點A在點C的北偏西60°方向上,則點A到河岸BC的距離為

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖①,E是直線AB,CD內部一點,ABCD,連接EA,ED

(1)探究猜想:

①若∠A=20°,∠D=40°,則∠AED= °

②猜想圖①中∠AED,∠EAB,∠EDC的關系,并用兩種不同的方法證明你的結論.

(2)拓展應用:

如圖②,射線FEl1l2交于分別交于點E、F,ABCDa,bc,d分別是被射線FE隔開的4個區(qū)域(不含邊界,其中區(qū)域ab位于直線AB上方,P是位于以上四個區(qū)域上的點,猜想:∠PEB,∠PFC,∠EPF的關系(任寫出兩種,可直接寫答案).

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖所示,一條直線上從左往右依次有AB、CD四個點.

1)如果線段AC、BC、BD的長分別為3a-b、a+b4a-2b,試求AD兩點間的距離;

2)如果將這條直線看作是以點C為原點的數軸(向右為正方向).

①直接寫出數軸上與點B距離為a+2b的點所表示的數______;

②設線段BD上一動點P所表示的數為x,求|x+a+b|+|x-3a+3b|的值(用含ab的代數表示);

③線段BD上有兩個動點PM,點P所表示的數為x,點M所表示的數為y,直接寫出式子|x-y|+|x+a+b|+|x-y-6a+4b|的最小值______(用含a、b的代數表示).

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】20191月份的月歷表中,任意框出表中豎列上三個相鄰的數(如圖,如框出了10,1724),則這三個數的和可能的是( )

A. 21B. 27C. 50D. 75

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】某生物興趣小組在四天的實驗研究中發(fā)現:駱駝的體溫會隨外部環(huán)境溫度的變化而變化,而且在這四天中每晝夜的體溫變化情況相同,他們將一頭駱駝前兩晝夜的體溫變化情況繪制成右圖,請根據圖象回答:

1)在這個問題中,自變量是什么?因變量是什么?

2)第一天中,在什么時間范圍內這頭駱駝的體溫是上升的?它的體溫從最低上升到最高需要多少時間?

3)第三天12時這頭駱駝的體溫是多少?

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,在Rt△ABC 中,∠C=90°,∠B=30°,以點 A 為圓心,任意長為半徑畫弧分別交 AB,AC 于點M N,再分別以 M,N 為圓心,大于MN的長為半徑畫弧,兩弧交于點 P,連接 AP 并延長交 BC 于點D,則下列說法中:①AD ∠BAC 的平分線; D 在線段 AB 的垂直平分線上;③S△DAC:S△ABC=1:2,正確的序號是_____

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】1)解不等式組,并在數軸上表示出解集:

2)分解因式:

xxy)﹣yyx

②﹣12x3+12x2y3xy2

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】小美周末來到公園,發(fā)現在公園一角有一種“守株待兔”游戲.游戲設計者提供了一只兔子和一個有A,B,C,D,E五個出入口的兔籠,而且籠內的兔子從每個出入口走出兔籠的機會是均等的.規(guī)定:①玩家只能將小兔從A,B兩個出入口放入,②如果小兔進入籠子后選擇從開始進入的出入口離開,則可獲得一只價值5元小兔玩具,否則每玩一次應付費3元.
(1)請用表格或樹狀圖求小美玩一次“守株待兔”游戲能得到小兔玩具的概率;
(2)假設有1000人次玩此游戲,估計游戲設計者可賺多少元?

查看答案和解析>>

同步練習冊答案