【題目】如圖,在四邊形ABCD中,∠BAD=130°,∠B=∠D=90°,點E,F分別是線段BC,DC上的動點.當△AEF的周長最小時,則∠EAF的度數為( 。
A. 90°B. 80°C. 70°D. 60°
【答案】B
【解析】
要使△AEF的周長最小,即利用點的對稱,使三角形的三邊在同一直線上,作出A關于BC和CD的對稱點A′,A″,即可得出∠AA′E+∠A″=∠HAA′=50°,進而得出∠AEF+∠AFE=2(∠AA′E+∠A″),即可得出答案.
作A關于BC和CD的對稱點A′,A″,連接A′A″,交BC于E,交CD于F,則A′A″即為△AEF的周長最小值.作DA延長線AH,
∵∠DAB=130°,
∴∠HAA′=50°,
∴∠AA′E+∠A″=∠HAA′=50°,
∵∠EA′A=∠EAA′,∠FAD=∠A″,
∴∠EAA′+∠A″AF=50°,
∴∠EAF=130°﹣50°=80°,
故選B.
科目:初中數學 來源: 題型:
【題目】花園內有一塊邊長為a的正方形土地,園藝師設計了三種不同的圖案,如圖①②③所示,其中的陰影部分用于種植花草,試比較三種方案中用于種植花草部分的面積的大小,并用平移的知識說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,直線l1∥l2,直線l與l1、l2分別交于A、B兩點,點M、N分別在l1、l2上,點M、N、P均在l的同側(點P不在l1、l2上),若∠PAM=α,∠PBN=β.
(1)當點P在l1與l2之間時.
①求∠APB的大小(用含α、β的代數式表示);
②若∠PAM的平分線與∠PBN的平分線交于點P1,∠P1AM的平分線與∠P1BN的平分線交于點P2,…,∠Pn﹣1AM的平分線與∠Pn﹣1BN的平分線交于點Pn,則∠AP1B= ,∠APnB= .(用含α、β的代數式表示,其中n為正整數)
(2)當點P不在l1與l2之間時.
若∠PAM的平分線與∠PBN的平分線交于點P,∠P1AM的平分線與∠P1BN的平分線交于點P2,…,∠Pn﹣1AM的平分線與∠Pn﹣1BN的平分線交于點Pn,請直接寫出∠APnB的大。ㄓ煤α、β的代數式表示,其中n為正整數)
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】在一個不透明的袋子里共有2個黃球和3個白球,每個球除顏色外都相同,小亮從袋子中任意摸出一個球,結果是白球,則下面關于小亮從袋中摸出白球的概率和頻率的說明正確的是( )
A. 小亮從袋中任意摸出一個球,摸出白球的概率是1
B. 小亮從袋中任意摸出一個球,摸出白球的概率是0
C. 在這次實驗中,小亮摸出白球的頻率是1
D. 由這次實驗的頻率去估計小亮從袋中任意摸出一個球,摸出白球的概率是1
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在△ABC中,AB=AC,AB的垂直平分線MN交AC于點D,交AB于點E.
(1)若∠A=40°,求∠DBC的度數;
(2)若AE=6,△CBD的周長為20,求BC的長.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】拋物線 上部分點的橫坐標x,縱坐標y的對應值如下表:
x | -2 | -1 | 0 | 1 | 2 |
y | 0 | 4 | 6 | 6 | 4 |
從上表可知,下列說法中正確的是 . (填寫序號)
① 拋物線與x軸的一個交點為(3,0);②函數y=ax2+bx+c的最大值為6;
② 拋物線的對稱軸是直線 ; ④在對稱軸左側,y隨x增大而增大.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】把一張對面互相平行的紙條折成如圖所示那樣,EF是折痕,若∠EFB=32°則下列結論正確的有( )
(1)∠C′EF=32°(2)∠AEC=116°(3)∠BGE=64°(4)∠BFD=116°.
A. 1個B. 2個C. 3個D. 4個
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖1,在Rt△ABC中,∠ACB=90°,點D是邊AB的中點,點E在邊BC上,AE=BE,點M是AE的中點,聯結CM,點G在線段CM上,作∠GDN=∠AEB交邊BC于N.
(1)如圖2,當點G和點M重合時,求證:四邊形DMEN是菱形;
(2)如圖1,當點G和點M、C不重合時,求證:DG=DN.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com