【題目】如圖將矩形ABCD的四個內角向內折起,恰好拼成一個無縫隙無重疊的四邊形EFGHEH=12,EF=16,則邊AB的長是( 。

A. 8+6B. 12C. 19.2D. 20

【答案】C

【解析】

先求出△EFH是直角三角形,再根據(jù)勾股定理求出FH=20,再利用三角形等面積法求出EM即可求出AB的長.

如圖所示:設HF上兩個點分別為M、Q,

M點是B點對折過去的,

∴∠EMH為直角,△AEH≌△MEH,

∴∠HEA=∠MEH,

同理∠MEF=∠BEF,

∴∠MEH+∠MEF90°,

∴四邊形EFGH是矩形,

∴△DHG≌△BFE△HEF是直角三角形,

BFDHMF,

AHHM,∴ADHF,

EH12,EF16,

FH,

AEEM

BE=AEEM=9.6,

ABAEBE9.69.619.2

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】由于天氣炎熱,某校根據(jù)《學校衛(wèi)生工作條例》,為預防“蚊蟲叮咬”,對教室進行“薰藥消毒”.已知藥物在燃燒機釋放過程中,室內空氣中每立方米含藥量y(毫克)與燃燒時間x(分鐘)之間的關系如圖所示(即圖中線段OA和雙曲線在A點及其右側的部分),當空氣中每立方米的含藥量低于2毫克時,對人體無毒害作用,那么從消毒開始,至少在_______分鐘內,師生不能呆在教室.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某公司員工分別在AB、C三個住宅區(qū),A區(qū)有30人,B區(qū)有15人,C,區(qū)有10人,三個區(qū)在一直線上,位置如圖所示,公司的接送車打算在此間只設一個?奎c,為要使所有員工步行到?奎c的路程總和最少,那么?奎c的位置應在_____區(qū).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,數(shù)軸上每相鄰兩點的相距一個單位長度,點AB、CD是這些點中的四個,且對應的位置如圖所示,它們對應的數(shù)分別是ab,cd

1)當ab=﹣1,則d  

2)若|d2a|7,求點C對應的數(shù).

3)若abcd0,a+b0,化簡|ab||b+c5||c5||da|+|8d|

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖所示,點C在線段AB上,AC = 8 cm,CB = 6 cm,點M、N分別是AC、BC的中點.

(1)求線段MN的長.

(2)若C為線段AB上任意一點,滿足AC+CB=a(cm),其他條件不變,你能猜想出MN的長度嗎?并說明理由.

(3)若C在線段AB的延長線上,且滿足AC-CB=b(cm),M、N分別為AC、BC的中點,你能猜想出MN的長度嗎?請畫出圖形,寫出你的結論,并說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知拋物線y=-x軸交于A,B兩點,與y軸交于點C,其中點A的坐標為(-3,0).

(1)求b的值及點B的坐標;

(2)試判斷ABC的形狀,并說明理由;

(3)一動點P從點A出發(fā),以每秒2個單位的速度向點B運動,同時動點Q從點B出發(fā),以每秒1個單位的速度向點C運動(當點P運動到點B時,點Q隨之停止運動),設運動時間為t秒,當t為何值時,PBQABC相似?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】嘉琪同學要證明命題兩組對邊分別相等的四邊形是平行四邊形是正確的,她先用尺規(guī)作出了如圖所示的□ABCD,并寫出了如下尚不完整的已知和求證.

已知:如圖,在四邊形ABCD中,BC=AD,AB=  

求證:四邊形ABCD  四邊形.

1)補全已知和求證(在方框中填空);

2)嘉琪同學想利用三角形全等,依據(jù)兩組對邊分別平行的四邊形是平行四邊形來證明.請你按她的想法完成證明過程.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】(本題滿分10分)在某市組織的大型商業(yè)演出活動中,對團體購買門票實行優(yōu)惠,決定在原定票價基礎上每張降價80元,這樣按原定票價需花費6000元購買的門票張數(shù),現(xiàn)在只花費了4800元.

1)求每張門票原定的票價;

2)根據(jù)實際情況,活動組織單位決定對于個人購票也采取優(yōu)惠措施,原定票價經(jīng)過連續(xù)二次降價后降為324元,求平均每次降價的百分率.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,∠ABD、∠ACD的角平分線交于點P,若∠A = 50°,D =10°,則∠P的度數(shù)為( )

A.15°B.20°C.25°D.30°

查看答案和解析>>

同步練習冊答案