如圖①所示,將一個(gè)正三角形紙片沿著它的一條邊上的高剪開(kāi),得到如圖②所示的兩個(gè)全等的Rt△ABC、Rt△DEF.

(1)根據(jù)正三角形的性質(zhì)可知:在圖②中,∠ABC=∠DEF=30°,AB=DE=2AC=2DF.由此請(qǐng)你歸納一下在含30°角的直角三角形中,30°角所對(duì)的直角邊與斜邊之間的關(guān)系:
在含30°角的直角三角形中,30°角所對(duì)的直角邊________;
(2)將這兩個(gè)直角三角形紙片按如圖③放置,使點(diǎn)B、D重合,點(diǎn)F在BC上.固定紙片DEF,將△ABC繞點(diǎn)F逆時(shí)針旋轉(zhuǎn)角α(0°<α<90°),使四邊形ACDE為以ED為底的梯形(如圖④所示),求此時(shí)α的值;
(3)猜想圖④中AE與CD之間的大小關(guān)系,并說(shuō)明理由.

解:(1)FD=AC=AB=DE.
故答案為:等于斜邊的一半.

(2)解:設(shè)DE交BC于點(diǎn)I
∵AC∥DE,
∴∠CIE=∠ACB=90°,
∵∠FDE=60°,
∴α=30°.
答:α=30°.

(3)AE=CD,
理由是:
在圖④中,設(shè)DE交BC于點(diǎn)I,作AH垂直于ED,設(shè)FD=2x,
則由(1)得ED=4x,ID=x,
∵梯形ACDE,AC∥DE,
∵∠ACB=90°,
∴∠CID=90°,
又因?yàn)锳C=FD=2x,
所以HI=AC=2x,
EH=4x-2x-x=x,
∵AC∥DE,
∴AH=CI,
∵∠AHE=∠CBD=90°,
∴△AHE≌△CID,
∴AE=CD.
分析:(1)由等邊三角形的性質(zhì)即可得到答案;
(2)設(shè)DE交BC于點(diǎn)I,由∠CBD和∠FDB的度數(shù)即可求出a的度數(shù);
(3)設(shè)DE交BC于點(diǎn)I,作AH垂直于ED,設(shè)FD=2x,推出HI=2x,EH=ID=x,再證△AHE和△CID全等,即可得到答案.
點(diǎn)評(píng):本題主要考查了線(xiàn)段垂直平分線(xiàn)的性質(zhì),全等三角形的性質(zhì)和判定,等邊三角形的性質(zhì),含30°角的直角三角形的性質(zhì)等知識(shí)點(diǎn),熟練地運(yùn)用性質(zhì)進(jìn)行證明是解此題的關(guān)鍵.題型較好,綜合性強(qiáng).
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

已知:等腰Rt△ABC中,∠A=90°,
(1)如圖1,E為AB上任意一點(diǎn),以CE為斜邊作等腰Rt△CDE,連接AD,則有AD∥BC;
(2)若將等腰Rt△ABC改為正△ABC,如圖2所示,E為AB邊上任一點(diǎn),△CDE為正三角形,連接AD,上述結(jié)論還成立嗎?答
 
;
(3)若△ABC為任意等腰三角形,AB=AC,如圖3,E為AB上任一點(diǎn),△DEC∽△ABC,連接AD,請(qǐng)問(wèn)AD與BC的位置關(guān)系怎樣?精英家教網(wǎng)答:
 

請(qǐng)你在上述3個(gè)結(jié)論中,任選一個(gè)結(jié)論進(jìn)行證明.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(1)如圖1,是某市公園周?chē)窒锏氖疽鈭D,A點(diǎn)表示1街與2巷的十字路口,B點(diǎn)表示3街與5巷的十字路口,如果用(1,2)→(2,2)→(3,2)→(3,3)→(3,4)→(3,5)表示由A點(diǎn)到B點(diǎn)的一條路徑,那么,你能同樣的方法寫(xiě)出由A點(diǎn)到B點(diǎn)盡可能近的其他兩條路徑嗎?

(2)從正三角形、正四邊形、正五邊形、正六邊形、正八邊形、正十邊形、正十二邊形中任選兩種正多邊形鑲嵌,請(qǐng)全部寫(xiě)出這兩種正多邊形.并從其中任選一種探索這兩種正多邊形共能鑲嵌成幾種不同的平面圖形?說(shuō)明你的理由.
(3)如圖2所示,已知AB∥CD,分別探索下列四個(gè)圖形中∠P(均為小于平角的角)與∠A,∠C的關(guān)系,請(qǐng)你從所得的四個(gè)關(guān)系中任選一個(gè)加以說(shuō)明.
(4)閱讀材料:多邊形上或內(nèi)部的一點(diǎn)與多邊形各頂點(diǎn)的連線(xiàn),將多邊形分割成若干個(gè)小三角形.如圖3給出了四邊形的具體分割方法,分別將四邊形分割成了2個(gè)、3個(gè)、4個(gè)小三角形.
請(qǐng)你按照上述方法將圖4中的六邊形進(jìn)行分割,并寫(xiě)出得到的小三角形的個(gè)數(shù)以及求出每個(gè)圖形中的六邊形的內(nèi)角和.試把這一結(jié)論推廣至n邊形,并推導(dǎo)出n邊形內(nèi)角和的計(jì)算公式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

現(xiàn)實(shí)生活中,我們常常能見(jiàn)到一些精美的紙質(zhì)包裝盒.現(xiàn)有一正方體形狀的無(wú)蓋紙盒,在盒底上印有一個(gè)兌獎(jiǎng)的標(biāo)志“吉”字,如圖1所示.現(xiàn)請(qǐng)同學(xué)們用剪刀沿這個(gè)正方體紙盒的棱將這個(gè)紙盒剪開(kāi),使之展開(kāi)成一平面圖形.那么,能剪出多少種不同情況的展開(kāi)圖呢?請(qǐng)把剪開(kāi)后展成的平面圖形畫(huà)出來(lái),要求展開(kāi)圖中的標(biāo)志“吉”字是正立著的.(其中一種的展開(kāi)情況如圖2,至少再畫(huà)出六種不同情況的展開(kāi)圖)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

如圖1,已知開(kāi)口向上的拋物線(xiàn)C1:y=a(x+2)2-5的頂點(diǎn)為P,與x軸相交于A、B兩點(diǎn)(點(diǎn)A在點(diǎn)B的左邊,如圖1所示),且數(shù)學(xué)公式

(1)求a的值;
(2)若直線(xiàn)y=-2x+b與拋物線(xiàn)C1只有一個(gè)交點(diǎn),且分別與x、y軸相交于C、D兩點(diǎn),求點(diǎn)P到直線(xiàn)CD的距離;
(3)如圖2,點(diǎn)Q是x軸正半軸上一點(diǎn),將拋物線(xiàn)C1繞點(diǎn)Q旋轉(zhuǎn)180°后得到拋物線(xiàn)C2.拋物線(xiàn)C2的頂點(diǎn)為N,與x軸相交于E、F兩點(diǎn)(點(diǎn)E在點(diǎn)F的左邊,如圖2所示),當(dāng)以點(diǎn)P、N、F為頂點(diǎn)的三角形是直角三角形時(shí),求點(diǎn)Q的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:第3章《圖形的相似》?碱}集(14):3.3 相似三角形的性質(zhì)和判定(解析版) 題型:解答題

已知:等腰Rt△ABC中,∠A=90°,
(1)如圖1,E為AB上任意一點(diǎn),以CE為斜邊作等腰Rt△CDE,連接AD,則有AD∥BC;
(2)若將等腰Rt△ABC改為正△ABC,如圖2所示,E為AB邊上任一點(diǎn),△CDE為正三角形,連接AD,上述結(jié)論還成立嗎?答______;
(3)若△ABC為任意等腰三角形,AB=AC,如圖3,E為AB上任一點(diǎn),△DEC∽△ABC,連接AD,請(qǐng)問(wèn)AD與BC的位置關(guān)系怎樣?答:______.
請(qǐng)你在上述3個(gè)結(jié)論中,任選一個(gè)結(jié)論進(jìn)行證明.

查看答案和解析>>

同步練習(xí)冊(cè)答案