【題目】如圖(1),兩個等腰直角三角形ABCDEF有一條邊在同一條直線l上,DE2,AB=1.將直線EB繞點E逆時針旋轉(zhuǎn)45°,交直線AD于點M.將圖(1)中的ABC沿直線l向右平移,設C、E兩點間的距離為k.請解答下列問題:

1)①當點C與點F重合時,如圖(2)所示,此時的值為 .

②在平移過程中,的值為 (用含k的代數(shù)式表示).

2)將圖(2)中的ABC繞點C逆時針旋轉(zhuǎn),使點A落在線段DF上,如圖(3)所示,將直線EB繞點E逆時針旋轉(zhuǎn)45°,交直線AD于點M,請補全圖形,并計算的值.

3)將圖(1)中的ABC繞點C逆時針旋轉(zhuǎn)αα≤45°),將直線EB繞點E逆時針旋轉(zhuǎn)45°,交直線AD于點M,計算的值(用含k的代數(shù)式表示).

【答案】1)①1;②;(2)圖詳見解析,=1;(3.

【解析】

1)①當點C與點F重合時,延長BAEM的延長線于點N,利用等腰三角形性質(zhì)得出DE=AN,由此進一步證明△DEM與△AMN全等,最后進一步求出答案即可;②延長BAEM的延長線于點N,先利用等腰三角形性質(zhì)得出EC=AN=,然后證明△DEM與△ANM相似,據(jù)此進一步求出答案即可;

2)連接AE,先證明△AEM與△FEB相似,由此進一步利用相似三角形性質(zhì)求出答案即可;

3)過點BBGBE,交直線EM于點G,連接AG,先證明△AGM與△DEM相似,由此進一步利用相似三角形性質(zhì)求出答案即可.

1)①當點C與點F重合時,如下圖,延長BAEM的延長線于點N

由題意得可得:∠NEB=45°,∠ABE=90°,

∴△EBN是等腰直角三角形,

BE=BN,

∵△ABC是等腰三角形,

AB=BC,

AN=EC

又∵△DEF是等腰三角形,

DE=EF

AN=EC=DE,

DEAN,

∴∠DEN=N,

在△DME與△AMN中,

∵∠DME=AMN,∠DEN=N,DE=AN,

∴△DEMAMNAAS),

DM=AM,

;

②如圖,延長BAEM的延長線于點N,

由題意得可得:∠NEB=45°,∠ABE=90°,

∴△EBN是等腰直角三角形,

BE=BN

∵△ABC是等腰三角形,

AB=BC,

EC=AN=,

DEAN

∴△DEM~ANM,

故答案為:①1,②;

2)補全如圖所示,連接AE

∵△ABC、DEF均為等腰直角三角形,DE2AB1,

EF2,BC=1,∠DEF90°,∠DFE=∠ACB45°,

DF2,AC=,∠EFB90°,

DF=2ACAD=,

∵點ACD的中點,

EADF,EA平分∠DEF

∴∠MAE90°,∠AEF45°,AE,

∵∠BEM45°,

∴∠MEA+AEB=∠BEF+AEB45°,

∴∠MEA=BEF

∴△AEM~FEB,

,

AM=,

DM=ADAM=

=1;

3)如圖,過點BBGBE,交直線EM于點G,連接AG,

∴∠EBG=90°,

∵∠BEM45°,

∴∠EGB45°,

BE=BG

∵△ABC為等腰直角三角形,

BA=BC,∠ABC90°,

∴∠ABG=∠CBE,

∴△ABGCBE,

AGEC=,∠AGB=CEB,

∵∠AGB+AGE=∠DEM+CEB45°,

∴∠AGE=∠DEM,

AGDE,

∴△AGM~DEM

.

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】全民健身的今天,散步運動是大眾喜歡的活動項目。家住同一小區(qū)的甲乙兩人每天都在同一條如圖1的陽光走道上來回散步.某天,甲乙兩人同時從大道的A端以各自的速度勻速在大道上散步健身,步行一段時間后,甲接到消息有同事在出發(fā)地等他商量事務(甲收消息的時間忽略不計),于是甲按原速度返回,遇見乙后用原來的2倍速度跑步前往,此時乙仍按原計劃繼續(xù)散步運動,4分鐘后甲結(jié)束了談話,繼續(xù)按原速度運動.圖2是甲乙兩人之間的距離Sm)與他們出發(fā)后的時間x(分)之間函數(shù)關(guān)系的部分圖像,已知甲步行速度比乙快.

1)由圖像可知,甲的速度為___ ___m/分;乙的速度為_____m/分.

2)若甲處理完事情繼續(xù)按原速度散步,再次遇到乙后兩人稍作放松后就各自回家,根據(jù)已有信息,就甲乙兩人一起散步到第二次相遇的過程,請在圖2中補全函數(shù)圖像,并寫出所補的圖像中的Sx的函數(shù)關(guān)系式及x的取值范圍.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某文具商店銷售學習用品,已知某品牌鋼筆的進價是20元,銷售過程發(fā)現(xiàn),每月銷量y支與銷售單價x元(x為正整數(shù))之間滿足一次函數(shù)關(guān)系,且每支鋼筆的售價不低于進價,也不高于35元,下表是yx之間的對應數(shù)據(jù):

銷售單價x(元)

22

24

30

月銷量y(只)

92

84

60

1)求yx的函數(shù)關(guān)系式并直接寫出自變量x的取值范圍.

2)每支鋼筆的售價定為多少元時,月銷售利潤恰為600元?

3)每支鋼筆的售價定為多少元時可使月銷售利潤最大?最大的月利潤是多少?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在中,,點邊的中點.

1)尺規(guī)作圖:作出以為直徑的圓于點,連接,.(保留作圖痕跡,不寫作法)

2)求證:是圓的切線.

3)當 時,四邊形是平行四邊形,此時,四邊形的形狀為

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某校學生會發(fā)現(xiàn)同學們就餐時剩余飯菜較多,浪費嚴重,于是準備在校內(nèi)倡導光盤行動,讓同學們珍惜糧食,為了讓同學們理解這次活動的重要性,校學生會在某天午餐后,隨機調(diào)查了部分同學這餐飯菜的剩余情況,并將結(jié)果統(tǒng)計后繪制成了如圖所示的不完整的統(tǒng)計圖.

1)這次被調(diào)查的同學共有  人;

2)補全條形統(tǒng)計圖,并在圖上標明相應的數(shù)據(jù);

3)扇形統(tǒng)計圖中圓心角α  度;

4)校學生會通過數(shù)據(jù)分析,估計這次被調(diào)查的所有學生一餐浪費的食物可以供50人食用一餐.據(jù)此估算,該校18000名學生一餐浪費的食物可供多少人食用一餐.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】小明和小紅為了更直觀了解“物體質(zhì)量”的概念,各選五個雞蛋稱重,以每個為標準,大于或等于即為達標,超過標準部分的克數(shù)記為正數(shù),不足標準部分的克數(shù)記為負數(shù).小明所統(tǒng)計的數(shù)據(jù)為實際稱重讀數(shù),小紅為記錄數(shù)據(jù),把所得數(shù)據(jù)整理成如下統(tǒng)計表(單位:).

序號

數(shù)據(jù)

姓名

1

2

3

4

5

小明

48

50

49

51

小紅

2

1

經(jīng)過統(tǒng)計發(fā)現(xiàn),小明所選雞蛋質(zhì)量的平均數(shù)為,小紅所選雞蛋質(zhì)量的眾數(shù)為,根據(jù)以上信息:

1)填空: ,

2)通過計算說明,小明和小紅哪個選取的雞蛋大小更均勻,請說明理由;

3)現(xiàn)從小明和小紅所選取的雞蛋里各隨機挑一個,這兩個雞蛋質(zhì)量都達標的概率是多少?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中,O為坐標原點,ABCD的邊ABx軸上,頂點Dy軸的正半軸上,點C在第一象限.將△AOD沿y軸翻折,使點A落在x軸上的點E處,點B恰好為OE的中點,DEBC交于點F.若y(k≠0)圖象經(jīng)過點C,且SBEF,則k的值為_____

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】建立模型:如圖1,已知ABC,AC=BCC=90°,頂點C在直線l上.

實踐操作:過點AADl于點D,過點BBEl于點E,求證:CADBCE

模型應用:(1)如圖2,在直角坐標系中,直線l1y=x+4y軸交于點A,與x軸交于點B,將直線l1繞著點A順時針旋轉(zhuǎn)45°得到l2.求l2的函數(shù)表達式.

(2)如圖3,在直角坐標系中,點B(8,6),作BAy軸于點A,作BCx軸于點C,P是線段BC上的一個動點,點Qa,2a﹣6)位于第一象限內(nèi).問點AP、Q能否構(gòu)成以點Q為直角頂點的等腰直角三角形,若能,請求出此時a的值,若不能,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖所示,以△ABC的邊AB為直徑作⊙O,點C在⊙O上,BD是⊙O的弦,∠A=∠CBD,過點CCFAB于點F,交BD于點G,過CCEBDAB的延長線于點E

1)求證:CE是⊙O的切線;

2)求證:CG=BG;

3)若∠DBA=30°,CG=4,求BE的長.

查看答案和解析>>

同步練習冊答案