【題目】在平面直角坐標(biāo)系中,點(diǎn)O為坐標(biāo)原點(diǎn),過點(diǎn)O的拋物線y=ax2﹣7ax與x軸正半軸交于點(diǎn)A,點(diǎn)D為第三象限拋物線上一點(diǎn),AD交y軸于點(diǎn)B,OA=2OB,點(diǎn)D縱坐標(biāo)為﹣4.
(1)如圖1,求拋物線的解析式;
(2)如圖2,點(diǎn)P為第一象限拋物線上一點(diǎn),過點(diǎn)P作PE⊥x軸,垂足為E,PD交y軸于點(diǎn)C,連接CE,求證:CE∥AD;
(3)如圖3,在(2)的條件下,將線段EC繞點(diǎn)E順時針旋轉(zhuǎn)90°,使點(diǎn)C恰好落在拋物線的點(diǎn)F處,連接OP,點(diǎn)Q為線段OP上一點(diǎn),若∠FQC=135°,求點(diǎn)Q坐標(biāo).
【答案】(1);(2)見解析;(3)
【解析】
(1)根據(jù)題意求得點(diǎn)A、B的坐標(biāo),再由相似的到D點(diǎn)的坐標(biāo)即可得到解析式;
(2)過點(diǎn)D作軸交PE延長線于M,設(shè)點(diǎn)P橫坐標(biāo)為m,通過三角函數(shù)可知,進(jìn)而根據(jù)平行線的判定定理即可得到;
(3)通過構(gòu)造正方形CEFG,過點(diǎn)F作于T,根據(jù)正方形的性質(zhì)可證,進(jìn)而再由圓的內(nèi)接四邊形的特征及三角形全等的性質(zhì)及判定即可求出Q點(diǎn)坐標(biāo).
解:(1)過點(diǎn)D作軸與H
令,則
即點(diǎn)A、B的坐標(biāo)分別為
∵,∴,解得:
∴點(diǎn),代入解析式得:
解得:
∴函數(shù)的表達(dá)式為解析式為:;
(2)過點(diǎn)D作軸交PE延長線于M,設(shè)點(diǎn)P橫坐標(biāo)為m
∵
∴
∴
∴
∵
∴
∴;
(3)構(gòu)造正方形CEFG,過點(diǎn)F作于T
∵點(diǎn)
∴,
∴
∴,
∴
∴
∴
∴點(diǎn)F坐標(biāo)為代入二次函數(shù)解析式并解得:
∴點(diǎn)
過F作于S
∵
∴為等腰直角三角形
∵四邊形FGCS對角互補(bǔ)
∴ F,G,C,S四點(diǎn)共圓
連接GS,過點(diǎn)G作交SF延長線于L
∵F,G,C,S四點(diǎn)共圓
∴
∵
∴
又∵
∴
∴
∴
∴
∵
∴
∴
∵點(diǎn)
∴OP解析式為
設(shè)點(diǎn)
∵,
∴
解得或(舍)
∴點(diǎn)Q坐標(biāo)為.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】國家推行“節(jié)能減排,低碳經(jīng)濟(jì)”政策后,低排量的汽車比較暢銷,某汽車經(jīng)銷商購進(jìn)A、B兩種型號的低排量汽車,其中A型汽車的進(jìn)貨單價比B型汽車的進(jìn)貨單價多2萬元;花50萬元購進(jìn)A型汽車的數(shù)量與花40萬元購進(jìn)B型汽車的數(shù)量相同.
(1)求A、B兩種型號汽車的進(jìn)貨單價;
(2)銷售中發(fā)現(xiàn)A型汽車的每周銷量yA(臺)與售價x(萬元/臺)滿足函數(shù)關(guān)系yA=﹣x+20,B型汽車的每周銷量yB(臺)與售價x(萬元/臺)滿足函數(shù)關(guān)系yB=﹣x+14,A型汽車的售價比B型汽車的售價高2萬元/臺.問A、B兩種型號的汽車售價各為多少時,每周銷售這兩種汽車的總利潤最大?最大利潤是多少萬元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在△ABC中,∠ACB=90°,AC=4,AB=5,點(diǎn)E、F分別在AC、AB上,連接EF,將△ABC沿EF折疊,使點(diǎn)A落在BC邊上的點(diǎn)D處.若△DEF有一邊垂直BC,則EF=_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】甲乙二人走步晨練,兩人同時同地向距離600米的目標(biāo)出發(fā),二人所走的路程y(米)與所走的時間t(分)之間的函數(shù)關(guān)系如圖所示,下列說法:①甲走全程的平均速度為75米/分:②第4分鐘時,二人在途中相遇;③第2分鐘時甲在乙前面100米處;④乙比甲提前2.5分鐘到達(dá)終點(diǎn);其中正確的有( )個.
A.1B.2C.3D.4
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在如圖所示的方格紙中,將等腰△ABC繞底邊BC的中點(diǎn)O旋轉(zhuǎn)180°.
(1)畫出旋轉(zhuǎn)后的圖形;
(2)觀察:旋轉(zhuǎn)后得到的三角形與原三角形拼成什么圖形?
(3)若要使拼成的圖形為正方形,那么△ABC應(yīng)滿足什么條件?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為了解全區(qū)3000名九年級學(xué)生英語聽力口語自動化考試成績的情況,隨機(jī)抽取了部分學(xué)生的成績(滿分30分且得分均為整數(shù)),制成下表:
分?jǐn)?shù)段(x分分) | 0≤x≤18 | 19≤x≤21 | 22≤x≤24 | 25≤x≤27 | 28≤x≤30 |
人數(shù) | 10 | 15 | 35 | 112 | 128 |
(1)填空:
①本次抽樣調(diào)查共抽取了 名學(xué)生;
②學(xué)生成績的中位數(shù)所在的分?jǐn)?shù)段是 ;
③若用扇形統(tǒng)計(jì)圖表示統(tǒng)計(jì)結(jié)果,則分?jǐn)?shù)段為0≤x≤18的人數(shù)所對應(yīng)扇形的圓心角為 °;
(2)如果將25分以上(含25分)定為優(yōu)秀,請估計(jì)全區(qū)九年級考生成績?yōu)閮?yōu)秀的人數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知二次函數(shù)()的圖象與軸交于點(diǎn)和點(diǎn),與交軸于點(diǎn),表示當(dāng)自變量為時的函數(shù)值,對于任意實(shí)數(shù),均有.
(1)求該二次函數(shù)的解析式;
(2)點(diǎn)是線段上的動點(diǎn),過點(diǎn)作,交于點(diǎn),連接.當(dāng)的面積最大時,求點(diǎn)的坐標(biāo);
(3)若平行于軸的動直線與該拋物線交于點(diǎn),與直線交于點(diǎn),點(diǎn)的坐標(biāo)為.是否存在這樣的直線,使得是等腰三角形?若存在,請求出點(diǎn)的坐標(biāo);若不存在,請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com