(2013•門頭溝區(qū)一模)為測量操場上懸掛國旗的旗桿的高度,設(shè)計的測量方案如圖所示:標桿高度CD=3m,標桿與旗桿的水平距離BD=15 m,人的眼睛與地面的高度EF=1.6m,人與標桿CD的水平距離DF=2m,E、C、A三點共線,則旗桿AB的高度為
13.5
13.5
米.
分析:利用三角形相似中的比例關(guān)系,首先由題目和圖形可看出,求AB的長度分成了2個部分,AH和HB部分,其中HB=EF=1.6m,剩下的問題就是求AH的長度,利用△CGE∽△AHE,得出
CG
AH
=
EG
EH
,把相關(guān)條件代入即可求得AH=11.9,所以AB=AH+HB=AH+EF=13.5m.
解答:解:∵CD⊥FB,AB⊥FB,
∴CD∥AB,
∴△CGE∽△AHE,
CG
AH
=
EG
EH

即:
CD-EF
AH
=
FD
FD+BD
,
3-1.6
AH
=
2
2+15

∴AH=11.9,
∴AB=AH+HB=AH+EF=11.9+1.6=13.5(m).
故答案為:13.5.
點評:本題考查了相似三角形的應(yīng)用,主要用到的解題思想是把梯形問題轉(zhuǎn)化成三角形問題,利用三角形相似比列方程來求未知線段的長度.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

(2013•門頭溝區(qū)二模)PM2.5是大氣中粒徑小于等于2.5微米的顆粒物,稱為細顆粒物,是表征環(huán)境空氣質(zhì)量的主要污染物指標.2.5微米等于0.0000025米,把0.0000025用科學(xué)記數(shù)法表示為(  )

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2013•門頭溝區(qū)二模)已知圓錐側(cè)面展開圖的扇形半徑為2cm,面積是
4
3
πcm2
,則扇形的弧長和圓心角的度數(shù)分別為(  )

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2013•門頭溝區(qū)二模)如圖,在平行四邊形ABCD中,AC=12,BD=8,P是AC上的一個動點,過點P作EF∥BD,與平行四邊形的兩條邊分別交于點E、F.設(shè)CP=x,EF=y,則下列圖象中,能表示y與x的函數(shù)關(guān)系的圖象大致是(  )

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2013•門頭溝區(qū)二模)某中學(xué)初三年級的學(xué)生開展測量物體高度的實踐活動,他們要測量一幢建筑物AB的高度.如圖,他們先在點C處測得建筑物AB的頂點A的仰角為30°,然后向建筑物AB前進20m到達點D處,又測得點 A的仰角為60°,則建筑物AB的高度是
10
3
10
3
m.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2013•門頭溝區(qū)二模)如圖,在平面直角坐標系xOy中,已知矩形ABCD的兩個頂點B、C的坐標分別是B(1,0)、C(3,0).直線AC與y軸交于點G(0,6).動點P從點A出發(fā),沿線段AB向點B運動.同時動點 Q從點C出發(fā),沿線段CD向點D運動.點P、Q的運動速度均為每秒1個單位,運動時間為t秒.過點P作PE⊥AB交AC于點E.
(1)求直線AC的解析式;
(2)當(dāng)t為何值時,△CQE的面積最大?最大值為多少?
(3)在動點P、Q運動的過程中,當(dāng)t為何值時,在矩形ABCD內(nèi)(包括邊界)存在點H,使得以C、Q、E、H為頂點的四邊形是菱形?

查看答案和解析>>

同步練習(xí)冊答案