如圖,以O(shè)為圓心,半徑為2的圓與反比例函數(shù)y=(x>0)的圖象交于A、B兩點(diǎn),則的長(zhǎng)度為( )

A.π
B.π
C.π
D.π
【答案】分析:作AC⊥x軸,設(shè)A的坐標(biāo)是:(a,b),在直角△OAC中,利用勾股定理以及A滿足反比例函數(shù)的解析式,即可得到關(guān)于a,b的方程組求得A的坐標(biāo),從而求得∠AOC的度數(shù),進(jìn)而得到∠AOB的度數(shù),利用弧長(zhǎng)的計(jì)算公式即可求解.
解答:解:作AC⊥x軸,設(shè)A的坐標(biāo)是:(a,b),(其中a>0,b>0)
根據(jù)題意得:,
解得:
則AC=1,OC=
則∠AOC=30°,同理,OB與y軸正半軸的夾角是30°,
因而∠AOB=90°-30°-30°=30°,
的長(zhǎng)度是:=
故選D.
點(diǎn)評(píng):本題是反比例函數(shù)與三角函數(shù)、弧長(zhǎng)的計(jì)算的綜合題,正確求得圓周角的度數(shù)是關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,在平面直角坐標(biāo)系中,M為x軸正半軸上的一點(diǎn),⊙M與x軸交于A、B兩點(diǎn),與y軸交于C、D兩點(diǎn),若A(-1,0),C點(diǎn)的坐標(biāo)為(0,
3
)

精英家教網(wǎng)
(1)求M點(diǎn)的坐標(biāo);
(2)如圖,P為
BC
上的一個(gè)動(dòng)點(diǎn),CQ平分∠PCD.當(dāng)P點(diǎn)運(yùn)動(dòng)時(shí),線段AQ的長(zhǎng)度是否改變?若不變,請(qǐng)求其值;若改變,請(qǐng)求出其變化范圍;
精英家教網(wǎng)
(3)如圖,以A為圓心AC為半徑作⊙A,P為⊙A上不同于C、D的一個(gè)動(dòng)點(diǎn),直線PC交⊙M于點(diǎn)Q,K為PQ的中點(diǎn),當(dāng)P點(diǎn)運(yùn)動(dòng)時(shí),現(xiàn)給出兩個(gè)結(jié)論:①
CK
PQ
的值不變;②線段OK的長(zhǎng)度不變.其中有且只有一個(gè)結(jié)論正確,選擇正確的結(jié)論證明并求其值.
精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,以O(shè)為圓心,4為半徑的圓與x軸交于點(diǎn)A,C在⊙O上,∠OAC=60°.
(1)求∠AOC的度數(shù);
(2)P為x軸正半軸上一點(diǎn),且PA=OA,連接PC,試判斷PC與⊙O的位置關(guān)系,并說(shuō)明理由;
(3)有一動(dòng)點(diǎn)M從A點(diǎn)出發(fā),在⊙O上按順時(shí)針?lè)较蜻\(yùn)動(dòng)一周,當(dāng)S△MAO=S△CAO時(shí),求動(dòng)點(diǎn)M所經(jīng)過(guò)的弧長(zhǎng),并寫(xiě)出此時(shí)M點(diǎn)的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

如圖,以O(shè)為圓心,4為半徑的圓與x軸交于點(diǎn)A,C在⊙O上,∠OAC=60°.
(1)求∠AOC的度數(shù);
(2)P為x軸正半軸上一點(diǎn),且PA=OA,連接PC,試判斷PC與⊙O的位置關(guān)系,并說(shuō)明理由;
(3)有一動(dòng)點(diǎn)M從A點(diǎn)出發(fā),在⊙O上按順時(shí)針?lè)较蜻\(yùn)動(dòng)一周,當(dāng)S△MAO=S△CAO時(shí),求動(dòng)點(diǎn)M所經(jīng)過(guò)的弧長(zhǎng),并寫(xiě)出此時(shí)M點(diǎn)的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:江蘇模擬題 題型:解答題

如圖,以O(shè)為圓心,4為半徑的圓與x軸交于點(diǎn)A,C在⊙O上,∠OAC=60°。
(1)求∠AOC的度數(shù);
(2)P為x軸正半軸上一點(diǎn),且PA=OA,連接PC,試判斷PC與⊙O的位置關(guān)系,并說(shuō)明理由;
(3)有一動(dòng)點(diǎn)M從A點(diǎn)出發(fā),在⊙O上按順時(shí)針?lè)较蜻\(yùn)動(dòng)一周,當(dāng)時(shí),求動(dòng)點(diǎn)M所經(jīng)過(guò)的弧長(zhǎng),并寫(xiě)出此時(shí)M點(diǎn)的坐標(biāo)。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2010年江蘇省南京市玄武區(qū)中考數(shù)學(xué)一模試卷(解析版) 題型:解答題

(2010•玄武區(qū)一模)如圖,以O(shè)為圓心,4為半徑的圓與x軸交于點(diǎn)A,C在⊙O上,∠OAC=60°.
(1)求∠AOC的度數(shù);
(2)P為x軸正半軸上一點(diǎn),且PA=OA,連接PC,試判斷PC與⊙O的位置關(guān)系,并說(shuō)明理由;
(3)有一動(dòng)點(diǎn)M從A點(diǎn)出發(fā),在⊙O上按順時(shí)針?lè)较蜻\(yùn)動(dòng)一周,當(dāng)S△MAO=S△CAO時(shí),求動(dòng)點(diǎn)M所經(jīng)過(guò)的弧長(zhǎng),并寫(xiě)出此時(shí)M點(diǎn)的坐標(biāo).

查看答案和解析>>

同步練習(xí)冊(cè)答案