精英家教網 > 初中數學 > 題目詳情
(2013•紹興模擬)如圖,△ABC紙片中,AB=BC>AC,點D是AB邊的中點,點E在邊AC上,將紙片沿DE折疊,使點A落在BC邊上的點F處.則下列結論成立的個數有( )
①△BDF是等腰直角三角形;②∠DFE=∠CFE;③DE是△ABC的中位線;④BF+CE=DF+DE.

A.1個
B.2個
C.3個
D.4個
【答案】分析:根據題意可知△DFE是△DAE對折的圖形,所以全等,故AD=DF,而AD=BD,所以BD=DF,但是∠B不一定等于45°,所以△BDF不一定是等腰直角三角形,①不成立;結合①中的結論,BD=DF,而∠ADE=∠FDE,∠ADF=∠DBF+∠DFB,可證∠BFD=∠EDF,故DE∥BC,即DE是△ABC的中位線,③成立;若③成立,利用△ADE≌△FDE,DE∥BC,∠AEF=∠EFC+∠ECF,可證∠DFE=∠CFE,②成立;根據折疊以及中位線定理得右邊=AB,要和左邊相等,則需CE=CF,則△CEF應是等邊三角形,顯然不一定,故④不成立.
解答:解:①根據折疊知AD=DF,所以BD=DF,即一定是等腰三角形.因為∠B不一定等于45°,所以①錯誤;
②連接AF,交DE于G,根據折疊知DE垂直平分AF,又點D是AB邊的中點,在△ABF中,根據三角形的中位線定理,得DG∥BF.進一步得E是AC的中點.由折疊知AE=EF,則EF=EC,得∠C=∠CFE.又∠DFE=∠A=∠C,所以∠DFE=∠CFE,正確;
③在②中已證明正確;
④根據折疊以及中位線定理得右邊=AB,要和左邊相等,則需CE=CF,則△CEF應是等邊三角形,顯然不一定,錯誤.
故選B.
點評:本題結合翻折變換,考查了三角形中位線定理,正確利用折疊所得對應線段之間的關系以及三角形的中位線定理是解題的關鍵.
練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

(2013•紹興模擬)已知點(1,-2)在反比例函數y=
k
x
的圖象上,那么這個函數圖象一定經過點( 。

查看答案和解析>>

科目:初中數學 來源: 題型:

(2013•紹興模擬)將正方形ABCD的各邊三等分(如圖所示),連接各分點.現(xiàn)在正方形ABCD內隨機取一點,則這點落在陰影部分的概率是( 。

查看答案和解析>>

科目:初中數學 來源: 題型:

(2013•紹興模擬)已知:圓錐的母線長為4,底面半徑為2,則圓錐的側面積等于(  )

查看答案和解析>>

科目:初中數學 來源: 題型:

(2013•紹興模擬)為參加2010年“北京市初中畢業(yè)生升學體育考試”,小靜同學進行了刻苦地練習,在測仰臥起坐時,記錄下5次的成績(單位:個)分別為:40,45,45,46,48.這組數據的眾數、中位數依次是
45
45
45
45

查看答案和解析>>

科目:初中數學 來源: 題型:

(2013•紹興模擬)小剛在紙上畫了一個面積為6分米2的正六邊形,然后連接相隔一點的兩點得到如圖所示的對稱圖案,他發(fā)現(xiàn)中間也出現(xiàn)了一個正六邊形,則中間的正六邊形的面積是
2
2
分米2

查看答案和解析>>

同步練習冊答案