【題目】如圖,AB是⊙O的直徑,點(diǎn)C是⊙O上一點(diǎn)(點(diǎn)C不與A,B重合),連接CA,CB.∠ACB的平分線(xiàn)CD與⊙O交于點(diǎn)D.
(1)求∠ACD的度數(shù);
(2)探究CA,CB,CD三者之間的等量關(guān)系,并證明;
(3)E為⊙O外一點(diǎn),滿(mǎn)足ED=BD,AB=5,AE=3,若點(diǎn)P為AE中點(diǎn),求PO的長(zhǎng).
【答案】(1)∠ACD=45°;(2)BC+AC=CD,見(jiàn)解析;(3)OP=.
【解析】
(1)由圓周角的定義可求∠ACB=90°,再由角平分線(xiàn)的定義得到∠ACD=45°;
(2)連接CO延長(zhǎng)與圓O交于點(diǎn)G,連接DG、BG,延長(zhǎng)DG、CB交于點(diǎn)F;先證明△BGF是等腰直角三角形,得到BG=BF,AG=BF,再證明△CDF是等腰三角三角形,得到CF=CD,即可求得BC+AC=CD;
(3)過(guò)點(diǎn)A作AM⊥ED,過(guò)點(diǎn)B作BN⊥ED交ED延長(zhǎng)線(xiàn)與點(diǎn)N,連接BE;先證明Rt△AMD≌Rt△DNB(AAS),再證明△AED是等腰三角形,分別求得EN=,BN=,在Rt△EBN中,BE=,OP=BN=.
解:(1)∵AB是直徑,點(diǎn)C在圓上,
∴∠ACB=90°,
∵∠ACB的平分線(xiàn)CD與⊙O交于點(diǎn)D,
∴∠ACD=45°;
(2)BC+AC=CD,
連接CO延長(zhǎng)與圓O交于點(diǎn)G,連接DG、BG,延長(zhǎng)DG、CB交于點(diǎn)F;
∴∠CDG=∠CBG=90°,
∵∠ACB=90°,
∴AC∥BG,
∴∠CGB=∠ACG,
∴∠CGB=45°+∠DCG,
∵∠CBF=90°+∠DCG,
∴∠BGF=45°,
∴△BGF是等腰直角三角形,
∴BG=BF,
∵△ACO≌△BGO(SAS),
∴AG=BF,
∵△CDF是等腰三角三角形,
∴CF=CD,
∴BC+AC=CD;
(3)過(guò)點(diǎn)A作AM⊥ED,過(guò)點(diǎn)B作BN⊥ED交ED延長(zhǎng)線(xiàn)與點(diǎn)N,連接BE;
∵∠ACD=∠ABD=45°,∠ADB=90°,
∴AD=BD,
∵AB=5,
∴BD=AD=
∵∠MAD=∠BDN,
∴Rt△AMD≌Rt△DNB(AAS),
∴AM=DN,MD=BN,
∵ED=BD,
∴△AED是等腰三角形,
∵AE=3,
∴AM=,DM=,
∴EN=,BN=,
在Rt△EBN中,BE=,
∵P是AE的中點(diǎn),O是AB的中點(diǎn),
∴OP=BN,
∴OP=.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,直線(xiàn)y=x+2與x軸交于點(diǎn)A,與y軸交于點(diǎn)C,與反比例函數(shù)y=在第一象限內(nèi)的圖象交于點(diǎn)B(1,3),連接BO,下面三個(gè)結(jié)論:①S△AOB=1.5;②點(diǎn)(x1,y1)和點(diǎn)(x2,y2)在反比例函數(shù)的圖象上,若x1>x2,則y1<y2;③不等式x+2<的解集是0<x<1.其中正確的有( )
A.0個(gè)B.1個(gè)C.2個(gè)D.3個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】中國(guó)“蛟龍”號(hào)深潛器目前最大深潛極限為7062.68米.如圖,某天該深潛器在海面下2000米的A點(diǎn)處作業(yè),測(cè)得俯角為30°正前方的海底C點(diǎn)處有黑匣子信號(hào)發(fā)出.該深潛器受外力作用可繼續(xù)在同一深度直線(xiàn)航行3000米后,再次在B點(diǎn)處測(cè)得俯角為45°正前方的海底C點(diǎn)處有黑匣子信號(hào)發(fā)出,請(qǐng)通過(guò)計(jì)算判斷“蛟龍”號(hào)能否在保證安全的情況下打撈海底黑匣子.(參考數(shù)據(jù)≈1.732)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,△ABC中,已知∠BAC=45°,AD⊥BC于D,BD=2,DC=3,把△ABD、△ACD分別以AB、AC為對(duì)稱(chēng)軸翻折變換,D點(diǎn)的對(duì)稱(chēng)點(diǎn)為E、F,延長(zhǎng)EB、FC相交于G點(diǎn).
(1)求證:四邊形AEGF是正方形;
(2)求AD的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】為了創(chuàng)建文明城市,增弘環(huán)保意識(shí),某班隨機(jī)抽取了8名學(xué)生(分別為A,B,C,D,E,F,G,H),進(jìn)行垃圾分類(lèi)投放檢測(cè),檢測(cè)結(jié)果如下表,其中“√”表示投放正確,“×”表示投放錯(cuò)誤,
學(xué)生 垃圾類(lèi)別 | A | B | C | D | E | F | G | H |
可回收物 | √ | × | × | √ | √ | × | √ | √ |
其他垃圾 | × | √ | √ | √ | √ | × | √ | √ |
餐廚垃圾 | √ | √ | √ | √ | √ | √ | √ | √ |
有害垃圾 | × | √ | × | × | × | √ | × | √ |
(1)檢測(cè)結(jié)果中,有幾名學(xué)生正確投放了至少三類(lèi)垃圾?請(qǐng)列舉出這幾名學(xué)生.
(2)為進(jìn)一步了解學(xué)生垃圾分類(lèi)的投放情況,從檢測(cè)結(jié)果是“有害垃圾”投放錯(cuò)誤的學(xué)生中隨機(jī)抽取2名進(jìn)行訪(fǎng)談,求抽到學(xué)生A的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖:在數(shù)軸上點(diǎn)表示數(shù),點(diǎn)表示數(shù),點(diǎn)表示數(shù)是最大的負(fù)整數(shù),且滿(mǎn)足.
(1)a=________,b=________,c=________.
(2)若將數(shù)軸折疊,使得點(diǎn)與點(diǎn)重合,則點(diǎn)與數(shù)________表示的點(diǎn)重合;
(3)點(diǎn)開(kāi)始在數(shù)軸上運(yùn)動(dòng),若點(diǎn)以每秒1個(gè)單位長(zhǎng)度的速度向左運(yùn)動(dòng),同時(shí),點(diǎn)和點(diǎn)分別以每秒2個(gè)單位長(zhǎng)度和3個(gè)單位長(zhǎng)度的速度向右運(yùn)動(dòng),假設(shè)秒鐘過(guò)后,若點(diǎn)與點(diǎn)之間的距離表示為,點(diǎn)與點(diǎn)之間的距離表示為,則________,________.(用含的代數(shù)式表示)
(4)的值是否隨著時(shí)間t的變化而改變?若變化,請(qǐng)說(shuō)明理由;若不變,請(qǐng)求其值。
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某學(xué)校為了豐富學(xué)生課余生活,開(kāi)展了“第二課堂”活動(dòng),推出了以下四種選修課程:.繪畫(huà);.唱歌;.跳舞;.演講;.書(shū)法.學(xué)校規(guī)定:每個(gè)學(xué)生都必須報(bào)名且只能選擇其中的一個(gè)課程.學(xué)校隨機(jī)抽查了部分學(xué)生,對(duì)他們選擇的課程情況進(jìn)行了統(tǒng)計(jì),并繪制了如下兩幅不完整的統(tǒng)計(jì)圖.
請(qǐng)結(jié)合統(tǒng)計(jì)圖中的信息解決下列問(wèn)題:
(1)這次抽查的學(xué)生人數(shù)是多少人?
(2)將條形統(tǒng)計(jì)圖補(bǔ)充完整.
(3)求扇形統(tǒng)計(jì)圖中課程所對(duì)應(yīng)扇形的圓心角的度數(shù).
(4)如果該校共有1200名學(xué)生,請(qǐng)你估計(jì)該校選擇課程的學(xué)生約有多少人.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】下面是小東設(shè)計(jì)的“過(guò)直線(xiàn)外一點(diǎn)作這條直線(xiàn)的平行線(xiàn)”的尺規(guī)作圖過(guò)程.
已知:直線(xiàn)及直線(xiàn)外一點(diǎn).
求作:,使得.
作法:如圖,
①在直線(xiàn)上取一點(diǎn),作射線(xiàn),以點(diǎn)為圓心,長(zhǎng)為半徑畫(huà)弧,交的延長(zhǎng)線(xiàn)于點(diǎn);
②在直線(xiàn)上取一點(diǎn)(不與點(diǎn)重合),作射線(xiàn),以點(diǎn)為圓心,長(zhǎng)為半徑畫(huà)弧,交的延長(zhǎng)線(xiàn)于點(diǎn);
③作直線(xiàn).
所以直線(xiàn)就是所求作的直線(xiàn).
根據(jù)小東設(shè)計(jì)的尺規(guī)作圖過(guò)程,
(1)使用直尺和圓規(guī),補(bǔ)全圖形;(保留作圖痕跡)
(2)完成下面的證明.
證明:∵_______,_______,
∴(____________)(填推理的依據(jù)).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,圖形都是由面積為1的正方形按一定的規(guī)律組成,其中,第(1)個(gè)圖形中面積為1的正方形有2個(gè),第(2)個(gè)圖形中面積為1的正方形有5個(gè),第(3)個(gè)圖形中面積為1的正方形有9個(gè),按此規(guī)律,則第(6)個(gè)圖形中面積為1的正方形的個(gè)數(shù)為( )
A.14B.20C.24D.27
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com