【題目】如圖,內(nèi)接于,AB是直徑,的切線PC交BA的延長(zhǎng)線于點(diǎn)P,交AC于點(diǎn)E,交PC于點(diǎn)F,連接AF;
判斷AF與的位置關(guān)系并說明理由.
若的半徑為8,,求AC的長(zhǎng).
【答案】(1)為圓O的切線,理由見解析;(2).
【解析】
(1)AF為為圓O的切線,理由為:連接OC,由PC為圓O的切線,利用切線的性質(zhì)得到CP垂直于OC,由OF與BC平行,利用兩直線平行內(nèi)錯(cuò)角相等,同位角相等,分別得到兩對(duì)角相等,根據(jù)OB=OC,利用等邊對(duì)等角得到一對(duì)角相等,等量代換得到一對(duì)角相等,再由OC=OA,OF為公共邊,利用SAS得出三角形AOF與三角形COF全等,由全等三角形的對(duì)應(yīng)角相等及垂直定義得到AF垂直于OA,即可得證;
(2)根據(jù)平行線的性質(zhì)可知:OE垂直于AC,利用面積法求出AE的長(zhǎng),即可確定出AC的長(zhǎng).
為圓O的切線,理由是:
連接OC,
為圓O切線,
,
,
,
,,
,
,
,
在和中,
,
≌,
,
,OA為的半徑,
則AF為的切線;
是的直徑,
,
,
,
,
,
在中,,,
根據(jù)勾股定理得:,
,
,
則.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖是由7個(gè)同樣大小的正方體擺成的幾何體.將正方體①移走后,所得幾何體( )
A. 主視圖改變,俯視圖改變 B. 左視圖改變,俯視圖改變
C. 俯視圖不變,左視圖改變 D. 主視圖不變,左視圖不變
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,排球運(yùn)動(dòng)員站在點(diǎn)O處練習(xí)發(fā)球,將球從O點(diǎn)正上方2m的A處發(fā)出,把球看成點(diǎn),其運(yùn)行的高度y(m)與運(yùn)行的水平距離x(m)滿足關(guān)系式y=a(xk)2+h.已知球與O點(diǎn)的水平距離為6m時(shí),達(dá)到最高2.6m,球網(wǎng)與O點(diǎn)的水平距離為9m.高度為2.43m,球場(chǎng)的邊界距O點(diǎn)的水平距離為18m,則下列判斷正確的是( )
A. 球不會(huì)過網(wǎng) B. 球會(huì)過球網(wǎng)但不會(huì)出界
C. 球會(huì)過球網(wǎng)并會(huì)出界 D. 無法確定
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知一個(gè)不透明的口袋中裝有5個(gè)只有顏色不同的球,其中2個(gè)白球,3個(gè)黑球第一次隨機(jī)摸出一個(gè)球,不放回,再隨機(jī)摸出一個(gè)球.
Ⅰ求第一次摸到黑球的概率;
Ⅱ請(qǐng)用列表或畫樹狀圖等方法求兩次都摸到黑球的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,陽光通過窗口照到教室內(nèi),豎直窗框在地面上留下2.1 m長(zhǎng)的影子如圖所示,已知窗框的影子DE的點(diǎn)E到窗下墻腳的距離CE=3.9 m,窗口底邊離地面的距離BC=1.2 m,試求窗口的高度(即AB的值).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知關(guān)于x的一元二次方程(m+1)x2+2mx+m﹣3=0總有實(shí)數(shù)根.
(1)求m的取值范圍;
(2)在(1)的條件下,當(dāng)m在取值范圍內(nèi)取最小整數(shù)時(shí),求原方程的解.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在Rt△ABC中,∠ACB=90°,△DCE是△ABC繞著點(diǎn)C順時(shí)針方向旋轉(zhuǎn)得到的,此時(shí)B、C、E在同一直線上.
(1)旋轉(zhuǎn)角的大小;
(2)若AB=10,AC=8,求BE的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某商場(chǎng)為方便顧客使用購物車,準(zhǔn)備將滾動(dòng)電梯的坡面坡度由1:1.8改為1:2.4(如圖).如果改動(dòng)后電梯的坡面長(zhǎng)為13米,求改動(dòng)后電梯水平寬度增加部分BC的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC內(nèi)接于⊙O,AC是⊙O直徑,D是的中點(diǎn),過點(diǎn)D作CB的垂線,分別交CB、CA延長(zhǎng)線于點(diǎn)F、E.
(1)判斷直線EF與⊙O的位置關(guān)系,并說明理由;
(2)若sinE=,求AB:EF的值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com