【題目】如圖,E,F(xiàn)分別是 □ABCD的邊AB,CD的中點(diǎn),則圖中平行四邊形的個(gè)數(shù)共有( ).
A. 2個(gè) B. 3個(gè) C. 4個(gè) D. 5個(gè)
【答案】C
【解析】
首先根據(jù)四邊形ABCD是平行四邊形,可得DC∥AB,DC=AB,再根據(jù)E、F分別是邊AB、CD的中點(diǎn),可得DF=FC=DC,AE=EB=AB,進(jìn)而可根據(jù)一組對(duì)邊平行且相等的四邊形是平行四邊形證明四邊形DFBE和CFAE都是平行四邊形,再根據(jù)平行四邊形的性質(zhì)可得DE∥FB,AF∥CE,進(jìn)而可證出四邊形FHEG是平行四邊形。
解:∵四邊形ABCD是平行四邊形,
∴DC∥AB,DC=AB,
∵E、F分別是邊AB、CD的中點(diǎn),
∴DF=FC=DC,AE=EB=AB,
∵DC=AB,
∴DF=FC=AE=EB,
∴四邊形DFBE和CFAE都是平行四邊形,
∴DE∥FB,AF∥CE,
∴四邊形FHEG是平行四邊形,
故選C。
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(1)計(jì)算:
(2)先化簡,再求值:3a-2(a-ab)+(b-2ab),其中a,b滿足|2a+b|+(2-b) =0
(3)解方程: .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】將一次函數(shù)y=kx+4(k≠0)的圖象稱為直線l.
(1)若直線l經(jīng)過點(diǎn)(2,0),直接寫出關(guān)于x的不等式kx+4>0的解集;
(2)若直線l經(jīng)過點(diǎn)(3,﹣2),求這個(gè)函數(shù)的表達(dá)式;
(3)若將直線l向右平移2個(gè)單位長度后經(jīng)過點(diǎn)(5,5),求k的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AB是O的直徑,AE交O于點(diǎn)E,且與O的切線CD互相垂直,垂足為D.
(1)求證:∠EAC=∠CAB;
(2)若CD=4,AD=8:①求O的半徑;②求tan∠BAE的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在今年法國網(wǎng)球公開賽中,我國選手李娜在決賽中成功擊敗對(duì)手奪冠,稱為獲得法國網(wǎng)球公開賽冠軍的亞洲第一人.某班體育委員就本班同學(xué)對(duì)該屆法國網(wǎng)球公開賽的了解程度進(jìn)行全面調(diào)查統(tǒng)計(jì),收集數(shù)據(jù)后繪制了兩幅不完整的統(tǒng)計(jì)圖,如圖(1)和圖(2).根據(jù)圖中的信息,解答下列問題:
(1)該班共有名學(xué)生;
(2)在圖(1)中,“很了解”所對(duì)應(yīng)的圓心角的度數(shù)為;
(3)把圖(2)中的條形圖形補(bǔ)充完整.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】閱讀下面材料:
在數(shù)學(xué)課上,老師提出如下問題:
已知:如圖,△ABC及AC邊的中點(diǎn)O。
求作:平行四邊形ABCD。
小敏的作法如下:
①連接BO并延長,在延長線上截取OD=BO;
②連接DA,DC.
所以四邊形ABCD就是所求作的平行四邊形.
老師說:“小敏的作法正確.”
請(qǐng)回答:小敏的作法正確的理由是_________________________________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,直線l1與l2相交于點(diǎn)O,且∠1+∠3=2(∠2+∠4),求下列角的度數(shù).(1)∠2+∠4;(2)∠1,∠2.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知∠AOB=100°,OC平分∠AOB,過點(diǎn)O作射線OD,使∠COD=30°,則∠AOD的度數(shù)________.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com