【題目】已知某種月餅形狀的俯視圖如圖1所示,該形狀由1個(gè)正六邊形和6個(gè)半圓組成,半圓直徑與正六邊形的邊長相等.
現(xiàn)商家設(shè)計(jì)了2種棱柱體包裝盒,其底面分別為矩形和正六邊形(如圖2和圖3)我們可從底面的利用率來記算整個(gè)包裝盒的利用情況.(底面利用率=×100%)
(1)請分別計(jì)算出圖2與圖3中的底面利用率(結(jié)果保留到0.1%);
(2)考慮到節(jié)約成本,商家希望底面利用率能夠不低于80%,且底面圖形仍然采用最基本的幾何形狀,請問商家的要求是否能夠滿足,若可以滿足,請?jiān)O(shè)計(jì)一種方案,并直接寫出此時(shí)的利用率;若不能滿足,請說明理由.
【答案】(1)圖2、3的底面利用率分別約為66.4%、40.2%;(2)設(shè)計(jì)底面為圓形的包裝盒,利用率約為84.5%.
【解析】
(1)設(shè)半圓直徑與正六邊形的邊長為a,根據(jù)正多邊形和圓的知識(shí),算出月餅面積,再算出圖2正方形的邊長,即可求出圖2的面積,和圖2底面的利用率;圖3的包裝盒六邊形和月餅相似,利用面積比等于相似比的平方,求出圖3包裝盒的底面利用率;
(2)設(shè)計(jì)底面為圓形的包裝盒,求出其半徑、面積、底面利用率,滿足底面利用率不低于80%.
解:(1)設(shè)半圓直徑與正六邊形的邊長a,連接正六邊形的中心和兩相鄰的頂點(diǎn),則,,
∴是等邊三角形,
∴=a,
過點(diǎn)作,
∴,,
∴=,
延長OC與其中一個(gè)半圓交于點(diǎn)D,
則,
∴,
40.2%;
===66.4%;
答:圖2、3的底面利用率分別約為66.4%、40.2%;
(2)商家的要求是否能夠滿足,設(shè)計(jì)如圖所示底面為圓的包裝盒,半徑為,
=,
答:設(shè)計(jì)底面為圓形的包裝盒,利用率約為84.5%.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知二次函數(shù)y ax2 2ax 3a2 3(其中x是自變量),當(dāng)x 2時(shí),y隨x的增大而增大,且3 x 0時(shí),y的最大值為9,則a的值為( ).
A.1或B.或C.D.1
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某交為了開展“陽光體育運(yùn)動(dòng)”,計(jì)劃購買籃球和足球,已知足球的單價(jià)比籃球的單價(jià)多元.若購買個(gè)籃球和個(gè)足球需花費(fèi)元.
(1)求籃球和足球的單價(jià)各是多少元;
(2)若學(xué)校購買籃球和足球共個(gè),且購買籃球的總金額不超過購買足球的總金額,則學(xué)校最多可購買多少個(gè)籃球?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】黃岡市某高新企業(yè)制定工齡工資標(biāo)準(zhǔn)時(shí)充分考慮員工對企業(yè)發(fā)展的貢獻(xiàn),同時(shí)提高員工的積極性、控制員工的流動(dòng)率,對具有中職以上學(xué)歷員工制定如下的工齡工資方案.
Ⅰ.工齡工資分為社會(huì)工齡工資和企業(yè)工齡工資;
Ⅱ.社會(huì)工齡=參加本企業(yè)工作時(shí)年齡-18,
企業(yè)工齡=現(xiàn)年年齡-參加本企業(yè)工作時(shí)年齡.
Ⅲ.當(dāng)年工作時(shí)間計(jì)入當(dāng)年工齡
Ⅳ.社會(huì)工齡工資y1(元/月)與社會(huì)工齡x(年)之間的函數(shù)關(guān)系式如①圖所示,企業(yè)工齡工資y2(元/月)與企業(yè)工齡x(年)之間的函數(shù)關(guān)系如圖②所示.
請解決以下問題
(1)求出y1、y2與工齡x之間的函數(shù)關(guān)系式;
(2)現(xiàn)年28歲的高級技工小張從18歲起一直在深圳實(shí)行同樣工齡工資制度的外地某企業(yè)工作,為了方便照顧老人與小孩,今年小張回鄉(xiāng)應(yīng)聘到該企業(yè),試計(jì)算第一年工齡工資每月下降多少元?
(3)已經(jīng)在該企業(yè)工作超過3年的李工程師今年48歲,試求出他的工資最高每月多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】本學(xué)期開學(xué)初,學(xué)校體育組對九年級某班50名學(xué)生進(jìn)行了跳繩項(xiàng)目的測試,根據(jù)測試成績制作了下面兩個(gè)統(tǒng)計(jì)圖.
根據(jù)統(tǒng)計(jì)圖解答下列問題:
(1)本次測試的學(xué)生中,得4分的學(xué)生有多少人?
(2)本次測試的平均分是多少分?
(3)通過一段時(shí)間的訓(xùn)練,體育組對該班學(xué)生的跳繩項(xiàng)目進(jìn)行了第二次測試,測得成績的最低分為3分.且得4分和5分的人數(shù)共有45人,平均分比第一次提高了0.8分,問第二次測試中得4分、5分的學(xué)生各有多少人?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在梯形中,,,,,,點(diǎn)在邊上,,點(diǎn)是射線上一個(gè)動(dòng)點(diǎn)(不與點(diǎn)、重合),聯(lián)結(jié)交射線于點(diǎn),設(shè),.
(1)求的長;
(2)當(dāng)動(dòng)點(diǎn)在線段上時(shí),試求與之間的函數(shù)解析式,并寫出函數(shù)的定義域;
(3)當(dāng)動(dòng)點(diǎn)運(yùn)動(dòng)時(shí),直線與直線的夾角等于,請直接寫出這時(shí)線段的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AB是⊙O的直徑,C是⊙O上一點(diǎn),D是的中點(diǎn),E為OD延長線上一點(diǎn),且∠CAE=2∠C,AC與BD交于點(diǎn)H,與OE交于點(diǎn)F.
(1)求證:AE是⊙O的切線;
(2)若DH=9,tanC=,求直徑AB的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,⊙O是△ABC的外接圓,AB是⊙O的直徑,I為△ABC的內(nèi)心,AI的延長線交BC于D,若OI⊥AD,則sin∠CAD的值為( )
A.B.C.D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在△ABC中,AB=AC
(1)求作一點(diǎn)P,使點(diǎn)P為△ABC的外接圓圓心.(保留作圖痕跡,不寫作法)
(2)若∠A=50°,求∠PBC的度數(shù).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com