【題目】設(shè)、是拋物線上的點(diǎn),坐標(biāo)系原點(diǎn)位于線段的中點(diǎn)處,則的長(zhǎng)為_____.
【答案】2
【解析】
由于原點(diǎn)O是線段AB的中點(diǎn)得到A點(diǎn)和B點(diǎn)關(guān)于原點(diǎn)中心對(duì)稱(chēng),則x1=-x2,y1=-y2,根據(jù)拋物線的位置可確定A點(diǎn)和B點(diǎn)在第一、三象限,設(shè)A點(diǎn)在第一象限,再把點(diǎn)A和B點(diǎn)坐標(biāo)代入解析式得到y1=2x12+4x1-2,-y1=2x12-4x1-2,兩式相加可得x1=1,則y1=4,于是可確定A點(diǎn)和B點(diǎn)坐標(biāo),然后利用兩點(diǎn)間的距離公式計(jì)算.
∵原點(diǎn)0是線段AB的中點(diǎn),∴A(x1,y1) 與B(x2,y2)關(guān)于原點(diǎn)中心對(duì)稱(chēng),∴x1=-x2,y1=-y2∵y=2x2+4x-2=2(x+1)2-4,∴拋物線的對(duì)稱(chēng)軸為直線x=-1,頂點(diǎn)坐標(biāo)為(-1,-4),∴A點(diǎn)和B點(diǎn)在第一、三象限,設(shè)A點(diǎn)在第一象限,∴B點(diǎn)坐標(biāo)為(- x1,-y1),∴y1=2x12+4x1-2,- y1=2x12-4x1-2∴x1=1,y1=4,∴A(1,4),B(-1,-4)∴AB==2,故答案為2.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】二次函數(shù)y=2x2的圖象如圖所示,點(diǎn)O為坐標(biāo)原點(diǎn),點(diǎn)A在y軸的正半軸上,點(diǎn)B、C在函數(shù)圖象上,四邊形OBAC為菱形,且∠OBA=120°,則點(diǎn)C的坐標(biāo)為______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】剪紙是中國(guó)特有的民間藝術(shù).在如圖所示的四個(gè)剪紙圖案中.既是軸對(duì)稱(chēng)圖形又是中心對(duì)稱(chēng)圖形的是( )
A. B. C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在等邊△BCD中,DF⊥BC于點(diǎn)F,點(diǎn)A為直線DF上一動(dòng)點(diǎn),以B為旋轉(zhuǎn)中心,把BA順時(shí)針?lè)较蛐D(zhuǎn)60°至BE,連接EC.
(1)當(dāng)點(diǎn)A在線段DF的延長(zhǎng)線上時(shí),
①求證:DA=CE;
②判斷∠DEC和∠EDC的數(shù)量關(guān)系,并說(shuō)明理由;
(2)當(dāng)∠DEC=45°時(shí),連接AC,求∠BAC的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,⊙O的半徑OD⊥弦AB于點(diǎn)C,連接AO并延長(zhǎng)交⊙O于點(diǎn)E,連接EC.若AB=8,CD=2,求EC的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在△ABC中,AD是BC邊上的高,∠B=30°,∠ACB=100°,AE平分∠BAC,求∠EAD的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知D是BC的中點(diǎn),過(guò)點(diǎn)D作BC的垂線交∠BAC的平分線于點(diǎn)E,EF⊥AB于點(diǎn)F,EG⊥AC于點(diǎn)G.
(1)求證:BF=CG;
(2)若AB=10,AC=6,求線段CG的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】(1)如圖①,在△ABC中,∠BAC=90,AB=AC,直線m經(jīng)過(guò)點(diǎn)A,BD⊥直線m,CE⊥直線m,垂足分別為點(diǎn)D.E證明:DE=BD+CE.
(2)如圖②,將(1)中的條件改為:在△ABC中,AB=AC,D. A.E三點(diǎn)都在直線m上,并且有∠BDA=∠AEC=∠BAC,請(qǐng)問(wèn)結(jié)論DE=BD+CE是否成立,若成立,請(qǐng)你給證明:若不存在,請(qǐng)說(shuō)明理由。
(3)應(yīng)用:如圖③,在△ABC中,∠BAC是鈍角,AB=AC,∠BAD>∠CAE,D. A.E三點(diǎn)都在直線m上,且∠BDA=∠AEC=∠BAC,只出現(xiàn)m與BC的延長(zhǎng)線交于點(diǎn)F,若BD=5,DE=7,EF=2CE,求△ABD與△ABF的面積之比。
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,O為坐標(biāo)原點(diǎn),等腰直角三角形OAB的斜邊AO在x軸上,,點(diǎn)B的坐標(biāo)為.
(1)求A點(diǎn)坐標(biāo);
(2)過(guò)B作軸于C,點(diǎn)D從B出發(fā)沿射線BC以每秒2個(gè)單位的速度運(yùn)動(dòng),連接AD、OD,動(dòng)點(diǎn)D的運(yùn)動(dòng)時(shí)間為t,的面積為S,求S與t的數(shù)量關(guān)系,并直接寫(xiě)出t的取值范圍;
(3)在(2)的條件下,當(dāng)點(diǎn)D運(yùn)動(dòng)到x軸下方時(shí),延長(zhǎng)AB交y軸于E,過(guò)E作于H,在x軸正半軸上取點(diǎn)F,連接BF交EH于G,,當(dāng)時(shí),求點(diǎn)D的坐標(biāo).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com