如圖,在△ABC的外接圓O中,D是的中點,AD交BC于點E,連接BD.
(1)列出圖中所有相似三角形;
(2)連接DC,若在上任取一點K(點A,B,C除外),連接CK,DK,DK交BC于點F,DC2=DF•DK是否成立?若成立,給出證明;若不成立,舉例說明.

【答案】分析:(1)根據(jù)相似三角形的判定可以得到相似三角形共有三對;
(2)先根據(jù)已知作圖,通過證明△KDC∽△CDF,再根據(jù)相似三角形的對應邊成比例即可得到DC2=DF•DK.
解答:解:(1)△BDE∽△CAE,△DBE∽△DAB,△ABD∽△AEC.

(2)DC2=DF•DK成立.
證明:∵D是的中點,
=,
∴∠DBC=∠DCB(等弧的圓周角相等),
又∵∠DBC=∠DKC,
∴∠DCB=∠DKC,
又∵∠KDC=∠CDF,
∴△KDC∽△CDF,
,
∴DC2=DF•DK.
點評:考查了相似三角形的判定方法及三角形外接圓與外心等知識的掌握情況.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)(在下面的(I)(II)兩題中選做一題,若兩題都做,按第(I)題評分)
(I)如圖,在△ABC中,AB=4,BC=3,∠B=90°,點D在AB上運動,但與A、B不重合,過B、C、D三點的圓交AC于E,連接DE.
(1)設AD=x,CE=y,求y與x之間的函數(shù)關系式,并指出自變量x的取值范圍;
(2)當AD長為關于x的方程2x2+(4m+1)x+2m=0的一個整數(shù)根時,求m的值.

(II)如圖,在直角坐標系xOy中,以點A(0,-3)為圓心作圓與x軸相切,⊙B與⊙A外切干點P,B點在x軸正半軸精英家教網(wǎng)上,過P點作兩圓的公切線DP交y軸于D,交x軸于C,
(1)設⊙A的半徑為r1,⊙B的半徑為r2,且r2=
23
r1,求公切線DP的長及直線DP的函數(shù)解析式,
(2)若⊙A的位置、大小不變,點B在X軸正半軸上移動,⊙B與⊙A始終外切.過D作⊙B的切線DE,E為切點.當DE=4時,B點在什么位置?從解答中能發(fā)現(xiàn)什么?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,在△ABC中,∠ABC和∠ACB的平分線相交于點O,過點O作EF∥BC交AB于E,交AC于F,過點O作OD⊥AC于D.下列四個結論:①∠BOC=90°+
1
2
∠A;②EF不可能是△ABC的中位線;③設OD=m,AE+AF=n,則S△AEF=mn;④以E為圓心、BE為半徑的圓與以F為圓心、CF為半徑的圓外切.其中正確結論的個數(shù)是(  )
A、1個B、2個C、3個D、4個

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,在△ABC中,BC=12,AB=10,sinB=
3
5
,動點D從點A出發(fā),以每秒1個單位的速度沿線段AB向點B 運動,DE∥BC,交AC于點E,以DE為邊,在點A的異側作正方形DEFG.設運動時間為t,
(1)t為何值時,正方形DEFG的邊GF在BC上;
(2)當GF運動到△ABC外時,EF、DG分別與BC交于點P、Q,是否存在時刻t,使得△CEP與△BDQ的面積之和等于△ABC面積的
1
4

(3)設△ABC與正方形DEFG重疊部分的面積為S,試求S的最大值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,在△ABC中,AB=AC,∠BAC=30°,分別以AB、AC為邊向形外作兩個等腰直角三角形ABD和ACE,使∠BAD=∠CAE=90°.
(1)求∠DBC的度數(shù);
(2)求證:BD=CE;
(3)若連接BE、CD,試判斷BE、CD是否相等,并對結論給予證明.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:解答題

如圖,自△ABC的外接圓弧BC上的任一點M,作MD⊥BC于D,P是AM上一點,作PE⊥AC,PF⊥AB,PG⊥BC,E,F(xiàn),G分別在AC,AB,AD上.證明:E,F(xiàn),G三點共線.

查看答案和解析>>

同步練習冊答案