【題目】如圖,已知拋物線經(jīng)過A(-2,0)B(-3,3)及原點(diǎn)O,頂點(diǎn)為C。

(1)求拋物線的解析式;

(2)若點(diǎn)D在拋物線上,點(diǎn)E在拋物線的對(duì)稱軸上,且A、O、D、E為頂點(diǎn)的四邊形是平行四邊形,求點(diǎn)D的坐標(biāo)。

(3)P是拋物線上的第一象限內(nèi)的動(dòng)點(diǎn),過點(diǎn)PPM⊥ x軸,垂足為M,是否存在點(diǎn)P點(diǎn)使得以P、M、A為頂點(diǎn)的三角形與△BOC相似?若存在,求P點(diǎn)的坐標(biāo),若不存在,說(shuō)明理由。

【答案】(1)y=x2+x(2)D1(1,3),D2(-3,3),C(-1,-1)(3)(,)或(3,15)

【解析】試題分析:本題著重考查了待定系數(shù)法求二次函數(shù)解析式、平行四邊形的性質(zhì)、相似三角形的判定和性質(zhì)等知識(shí)點(diǎn),綜合性強(qiáng),同時(shí)也考查了學(xué)生分類討論,數(shù)形結(jié)合的數(shù)學(xué)思想方法.

1)設(shè)拋物線的解析式為y=ax2+bx+ca≠0),把點(diǎn)A-20),B-33),O00),代入求出ab,c的值即可;

2)首先由A的坐標(biāo)可求出OA的長(zhǎng),再根據(jù)四邊形AODE是平行四邊形,D在對(duì)稱軸直線x=-1右側(cè),進(jìn)而可求出D橫坐標(biāo)為:-1+2=1,代入拋物線解析式即可求出其橫坐標(biāo);

3)分△PMA∽△COB△PMA∽△BOC表示出PMAM,從而表示出點(diǎn)P的坐標(biāo),代入求得的拋物線的解析式即可求得t的值,從而確定點(diǎn)P的坐標(biāo).

試題解析:(1)拋物線的解析式為

2當(dāng)AE為邊時(shí),

∵AO、D、E為頂點(diǎn)的四邊形是平行四邊形,

∴DE=AO=2,則Dx軸下方不可能,

∴D在軸上方且DE=2,則D113),D2﹣3,3,

當(dāng)AO為對(duì)角線時(shí),則DEAO互相平分,

點(diǎn)E在對(duì)稱軸上,且線段AO的中點(diǎn)橫坐標(biāo)為-1,

由對(duì)稱性知,符合條件的點(diǎn)D只有一個(gè),與點(diǎn)C重合,即C-1,-1),

故符合條件的點(diǎn)D有三個(gè),分別是D11,3),D2-3,3),C-1,-1)。

3)存在,如圖:

∵B-3,3),C-1,-1),

根據(jù)勾股定理得:

BO2=18,CO2=2,BC2=20,

∴BO2+CO2=BC2

∴△BOC是直角三角形,

假設(shè)存在點(diǎn)P,使以P,M,A為頂點(diǎn)的 三角形與△BOC相似,

設(shè)Pxy),

由題意知x0y0,且,

△AMP∽△BOC,

,即x+2=3x2+2x)得:,x2=-2(舍去)當(dāng)時(shí),,即P);

△PMA∽△BOC,,

即:x2+2x=3x+2,

得:x1=3x2=-2(舍去),

當(dāng)x=3時(shí),y=15,即P3,15),

故符合條件的點(diǎn)P有兩個(gè),分別是P)或(3,15).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】觀察下面的點(diǎn)陣圖和相應(yīng)的等式,探究其中的規(guī)律:

(1)認(rèn)真觀察,并在④后面的橫線上寫出相應(yīng)的等式.

1=1 1+2==3 1+2+3==6    

(2)結(jié)合(1)觀察下列點(diǎn)陣圖,并在⑤后面的橫線上寫出相應(yīng)的等式.

1=121+3=223+6=326+10=42   

(3)通過猜想,寫出(2)中與第n個(gè)點(diǎn)陣相對(duì)應(yīng)的等式   

【答案】(1)10;(2)見解析;(3)

【解析】試題分析:(1)根據(jù)①②③觀察會(huì)發(fā)現(xiàn)第四個(gè)式子的等號(hào)的左邊是1+2+3+4,右邊分子上是(1+4)×4,從而得到規(guī)律;

(2)通過觀察發(fā)現(xiàn)左邊是10+15,右邊是255的平方;

(3)過對(duì)一些特殊式子進(jìn)行整理、變形、觀察、比較,歸納出一般規(guī)律.

試題解析:(1)根據(jù)題中所給出的規(guī)律可知:1+2+3+4==10;

(2)由圖示可知點(diǎn)的總數(shù)是5×5=25,所以10+15=52

(3)由(1)(2)可知

點(diǎn)睛:主要考查了學(xué)生通過特例分析從而歸納總結(jié)出一般結(jié)論的能力.對(duì)于找規(guī)律的題目首先應(yīng)找出哪些部分發(fā)生了變化,是按照什么規(guī)律變化的.通過分析找到各部分的變化規(guī)律后用一個(gè)統(tǒng)一的式子表示出變化規(guī)律是此類題目中的難點(diǎn).

型】解答
結(jié)束】
19

【題目】如圖,用細(xì)線懸掛一個(gè)小球,小球在豎直平面內(nèi)的A、C兩點(diǎn)間來(lái)回?cái)[動(dòng),A點(diǎn)與地面距離AN=14cm,小球在最低點(diǎn)B時(shí),與地面距離BM=5cm,AOB=66°,求細(xì)線OB的長(zhǎng)度.(參考數(shù)據(jù):sin66°≈0.91,cos66°≈0.40,tan66°≈2.25)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】一輛最大載重48噸的大型貨車,貨車的貨箱是長(zhǎng)14m,寬2.5m,高3m的長(zhǎng)方體,現(xiàn)有甲種貨物18噸,乙種貨物70m3,而甲種貨物每噸的體積為2.5m3,乙種貨物每立方米0.5噸.問:

1)甲、乙兩種貨物是否都能裝上車?請(qǐng)說(shuō)明理由.

2)為了最大地利用車的載重量和貨箱的容積,兩種貨物應(yīng)各裝多少噸?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在一個(gè)不透明的盒子中放有四張分別寫有數(shù)字1、2、3、4的紅色卡片和三張分別寫有數(shù)字1、2、3的藍(lán)色卡片,卡片除顏色和數(shù)字外其它完全相同。

(1)從中任意抽取一張卡片,則該卡片上寫有數(shù)字1的概率是;

(2)將3張藍(lán)色卡片取出后放入另外一個(gè)不透明的盒子內(nèi),然后在兩個(gè)盒子內(nèi)各任意抽取一張卡片,以紅色卡片上的數(shù)字作為十位數(shù),藍(lán)色卡片上的數(shù)字作為個(gè)位數(shù)組成一個(gè)兩位數(shù),求這個(gè)兩位數(shù)大于22的概率。(請(qǐng)利用樹狀圖或列表法說(shuō)明)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】為慶祝春節(jié),市政府決定在市政廣場(chǎng)上增一排燈花,其設(shè)計(jì)由以下圖案逐步演變而成,其中圓圈代表燈花中的燈泡,n代表第n次演變過程,s代表第n次演變后的燈泡的個(gè)數(shù),仔細(xì)觀察下列演變過程,當(dāng)n=7時(shí),s= ).

A.162B.176C.190D.214

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在△ABC中,BD平分∠ABC,EF垂直平分BDCA延長(zhǎng)線于點(diǎn)E.

(1)求證:ED2=EAEC;

(2)若ED=6,BD=CD=3,求BC的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知∠ABC=90°,D是直線AB上的點(diǎn),AD=BC

(1)如圖1,過點(diǎn)AAFAB,截取AF=BD,連接DCDF、CF,判斷△CDF的形狀并證明;

(2)如圖2,E是直線BC上一點(diǎn),且CE=BD,直線AE、CD相交于點(diǎn)P,∠APD的度數(shù)是一個(gè)固定的值嗎?若是,請(qǐng)求出它的度數(shù);若不是,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,ABC,ACB=90°,A=30°,AB的垂直平分線分別交ABAC于點(diǎn)D,E.

(1)求證:AE=2CE;

(2)連接CD,請(qǐng)判斷BCD的形狀,并說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】撫順某中學(xué)為了解八年級(jí)學(xué)生的體能狀況,從八年級(jí)學(xué)生中隨機(jī)抽取部分學(xué)生進(jìn)行體能測(cè)試,測(cè)試結(jié)果分為A,B,C,D四個(gè)等級(jí).請(qǐng)根據(jù)兩幅統(tǒng)計(jì)圖中的信息回答下列問題:

1)本次抽樣調(diào)查共抽取了多少名學(xué)生?

2)求測(cè)試結(jié)果為C等級(jí)的學(xué)生數(shù),并補(bǔ)全條形圖;

3)若該中學(xué)八年級(jí)共有700名學(xué)生,請(qǐng)你估計(jì)該中學(xué)八年級(jí)學(xué)生中體能測(cè)試結(jié)果為D等級(jí)的學(xué)生有多少名?

4)若從體能為A等級(jí)的2名男生2名女生中隨機(jī)的抽取2名學(xué)生,做為該校培養(yǎng)運(yùn)動(dòng)員的重點(diǎn)對(duì)象,請(qǐng)用列表法或畫樹狀圖的方法求所抽取的兩人恰好都是男生的概率.

查看答案和解析>>

同步練習(xí)冊(cè)答案