【題目】如圖1,四邊形ABCD是正方形,點E是AB邊的中點,以AE為邊作正方形AEFG,連接DE,BG.
(1)發(fā)現(xiàn)
①線段DE、BG之間的數(shù)量關(guān)系是 ;
②直線DE、BG之間的位置關(guān)系是 .
(2)探究
如圖2,將正方形AEFG繞點A逆時針旋轉(zhuǎn),(1)中的結(jié)論是否仍然成立?若成立,請給出證明;若不成立,請說明理由.
(3)應(yīng)用
如圖3,將正方形AEFG繞點A逆時針旋轉(zhuǎn)一周,記直線DE與BG的交點為P,若AB=4,請直接寫出點P到CD所在直線距離的最大值和最小值.
【答案】(1)發(fā)現(xiàn):①DE=BG;②DE⊥BG;(2)探究:(1)中的結(jié)論仍然成立,理由詳見解析;(3)應(yīng)用:點P到CD所在直線距離的最大值是2+2,最小值是3﹣ .
【解析】
(1)證明△AED≌△AGB可得出兩個結(jié)論;
(2)①根據(jù)正方形的性質(zhì)得出AE=AG,AD=AB,∠EAG=∠DAB=90°,求出∠EAD=∠GAB,根據(jù)SAS推出△EAD≌△GAB即可;
②根據(jù)全等三角形的性質(zhì)得出∠GBA=∠EDA,求出∠DHB=90°即可;
(3)先確定點P到CD所在直線距離的最大值和最小值的位置,再根據(jù)圖形求解.
解:(1)①線段DE、BG之間的數(shù)量關(guān)系是:DE=BG,
理由是:如圖1,
∵四邊形ABCD是正方形,
∴AB=AD,∠BDA=90°,
∴∠BAG=∠BAD=90°,
∵四邊形AEFG是正方形,
∴AE=AG,
∴△AED≌△AGB(SAS),
∴DE=BG;
②直線DE、BG之間的位置關(guān)系是:DE⊥BG,
理由是:如圖2,延長DE交BG于Q,
由△AED≌△AGB得:∠ABG=∠ADE,
∵∠AED+∠ADE=90°,∠AED=∠BEQ,
∴∠BEQ+∠ABG=90°,
∴∠BQE=90°,
∴DE⊥BG;
故答案為:①DE=BG;②DE⊥BG;
(2)(1)中的結(jié)論仍然成立,理由是:
①如圖3,
∵四邊形AEFG和四邊形ABCD是正方形,
∴AE=AG,AD=AB,∠EAG=∠DAB=90°,
∴∠EAD=∠GAB=90°+∠EAB,
在△EAD和△GAB中,
,
∴△EAD≌△GAB(SAS),
∴ED=GB;
②ED⊥GB,
理由是:∵△EAD≌△GAB,
∴∠GBA=∠EDA,
∵∠AMD+∠ADM=90°,∠BMH=∠AMD,
∴∠BMH+∠GBA=90°,
∴∠DHB=180°﹣90°=90°,
∴ED⊥GB;
(3)將正方形AEFG繞點A逆時針旋轉(zhuǎn)一周,即點E和G在以A為圓心,以2為半徑的圓上,過P作PH⊥CD于H,
①當P與F重合時,此時PH最小,如圖4,
在Rt△AED中,AD=4,AE=2,
∴∠ADE=30°,DE==2,
∴DF=DE﹣EF=2﹣2,
∵AD⊥CD,PH⊥CD,
∴AD∥PH,
∴∠DPH=∠ADE=30°,
∵cos30°==,
∴PH=(2﹣2)=3﹣;
②∵DE⊥BG,∠BAD=90°,
∴以BD的中點O為圓心,以BD為直徑作圓,P、A在圓上,
當P在的中點時,如圖5,此時PH的值最大,
∵AB=AD=4,
由勾股定理得:BD=4,
則半徑OB=OP=2,
∴PH=2+2.
綜上所述,點P到CD所在直線距離的最大值是2+2,最小值是3﹣.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在下列選項中,是反比例函數(shù)關(guān)系的為
A. 在直角三角形中,30°角所對的直角邊y與斜邊x之間的關(guān)系
B. 在等腰三角形中,頂角y與底角x之間的關(guān)系
C. 圓的面積S與它的直徑d之間的關(guān)系
D. 面積為20的菱形,其中一條對角線y與另一條對角線x之間的關(guān)系
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四邊形ABCD中,CD∥AB,AD=BC.已知A(﹣2,0),B(6,0),D(0,3),函數(shù)y=(x>0)的圖象G經(jīng)過點C.
(1)求點C的坐標和函數(shù)y=(x>0)的表達式;
(2)將四邊形ABCD向上平移2個單位得到四邊形A'B'C'D',問點B'是否落在圖象G上?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為大力弘揚“奉獻、友愛、互助、進步”的志愿服務(wù)精神,傳播“奉獻他人、提升自我”的志愿服務(wù)理念,合肥市某中學(xué)利用周末時間開展了“助老助殘、社區(qū)服務(wù)、生態(tài)環(huán)保、網(wǎng)絡(luò)文明”四個志愿服務(wù)活動(每人只參加一個活動),九年級某班全班同學(xué)都參加了志愿服務(wù),班長為了解志愿服務(wù)的情況,收集整理數(shù)據(jù)后,繪制以下不完整的統(tǒng)計圖,請你根據(jù)統(tǒng)計圖中所提供的信息解答下列問題:
(1)請把折線統(tǒng)計圖補充完整;
(2)求扇形統(tǒng)計圖中,網(wǎng)絡(luò)文明部分對應(yīng)的圓心角的度數(shù);
(3)小明和小麗參加了志愿服務(wù)活動,請用樹狀圖或列表法求出他們參加同一服務(wù)活動的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】若二次函數(shù)y=x2﹣6x+c的圖象過A(﹣1,y1),B(2,y2),C(3,y3),則y1、y2、y3的大小關(guān)系是( 。
A. y1>y2>y3 B. y1>y3>y2 C. y2>y1>y3 D. y3>y1>y2
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為了落實國務(wù)院的指示精神,某地方政府出臺了一系列“三農(nóng)”優(yōu)惠政策,使農(nóng)民收入大幅度增加.某農(nóng)戶生產(chǎn)經(jīng)銷一種農(nóng)產(chǎn)品,已知這種產(chǎn)品的成本價為每千克20元,市場調(diào)查發(fā)現(xiàn),該產(chǎn)品每天的銷售量y(千克)與銷售價x(元/千克)有如下關(guān)系:y=﹣2x+80.設(shè)這種產(chǎn)品每天的銷售利潤為w元.
(1)求w與x之間的函數(shù)關(guān)系式.
(2)該產(chǎn)品銷售價定為每千克多少元時,每天的銷售利潤最大?最大利潤是多少元?
(3)如果物價部門規(guī)定這種產(chǎn)品的銷售價不高于每千克28元,該農(nóng)戶想要每天獲得150元的銷售利潤,銷售價應(yīng)定為每千克多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】一位籃球運動員在距離籃圈中心水平距離4m處起跳投籃,球沿一條拋物線運動,當球運動的水平距離為2.5m時,達到最大高度3.5m,然后準確落入籃框內(nèi).已知籃圈中心距離地面高度為3.05m,在如圖所示的平面直角坐標系中,下列說法正確的是( 。
A. 此拋物線的解析式是y=﹣x2+3.5
B. 籃圈中心的坐標是(4,3.05)
C. 此拋物線的頂點坐標是(3.5,0)
D. 籃球出手時離地面的高度是2m
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】一段路基的橫斷面是直角梯形,如圖1,已知原來坡面的坡角α的正弦值為0.6,現(xiàn)不改變土石方量,全部利用原有土石方進行坡面改造,使坡度變小,達到如右下圖2的技術(shù)要求.試求出改造后坡面的坡度是多少?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com