如圖,過?ABCD的頂點A分別作AH⊥BC于點H、AG⊥CD于點G,且AH≠AG,AH、AC、AG將∠BAD分成∠1、∠2、∠3、∠4,則下列關(guān)系正確的是( �。�
分析:由AH⊥BC,AG⊥CD,∠B=∠D,可得∠1=∠2,而∠BAC≠∠DAC,則∠3≠∠4,由平行四邊形ABCD中,鄰邊不一定相等,那么△ABH和△ADG不全等,BH≠DG,HC≠CG.
解答:解:∵AH⊥BC,AG⊥CD,∴∠AHB=∠AGD=90°,
∵∠B=∠D,∴∠1=∠2,
∵∠BAC≠∠DAC,
∴∠3≠∠4,
∵AH=5,AG=6,AB≠AD,∴△ABH和△ADG不全等,
∴BH≠DG,HC≠CG,
故C正確,A、B、D都錯誤.
故選C.
點評:本題考查的是利用平行四邊形的性質(zhì)結(jié)合三角形全等來解決有關(guān)線段相等、角的相等的證明,難度一般,注意掌握平行四邊形的對邊相等、鄰角互補.
練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

(2012•包頭)如圖,過?ABCD的對角線BD上一點M分別作平行四邊形兩邊的平行線EF與GH,那么圖中的?AEMG的面積S1與?HCFM的面積S2的大小關(guān)系是( �。�

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,過?ABCD的中心O作OE⊥BD,交AD于點E,∠DBC=20°,則∠EBD=
20°
20°

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖:過?ABCD的頂點C作射線CP分別交BD、AD于E、F,交BA的延長線于G
(1)求證:CE2=EF•EG;
(2)若GF=3,CE=2,求EF的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,過?ABCD的頂點A的直線交BD于點P,交CD于點Q,交BC的延長線于點R.
求證:
PQ
PR
=
PD2
PB2

查看答案和解析>>

同步練習冊答案
闂傚倸鍊搁崐鎼佸磹閹间礁纾归柣鎴eГ閸ゅ嫰鏌ら崫銉︽毄濞寸姵鑹鹃埞鎴炲箠闁稿﹥顨嗛幈銊р偓闈涙啞瀹曞弶鎱ㄥ璇蹭壕闂佺粯渚楅崰娑氱不濞戞ǚ妲堟繛鍡樺姈椤忕喖姊绘担鑺ョ《闁革綇绠撻獮蹇涙晸閿燂拷 闂傚倸鍊搁崐鎼佸磹閹间礁纾归柟闂寸绾惧綊鏌熼梻瀵割槮缁炬儳缍婇弻鐔兼⒒鐎靛壊妲紒鐐礃椤曆囧煘閹达附鍋愰柛娆忣槹閹瑧绱撴担鍝勵€岄柛銊ョ埣瀵濡搁埡鍌氫簽闂佺ǹ鏈粙鎴︻敂閿燂拷