精英家教網 > 初中數學 > 題目詳情
如圖,矩形ABCD中,O是AC與BD的交點,過O點的直線EF與AB,CD的延長線分別交于E,F。
(1)求證:△BOE≌△DOF;
(2)當EF與AC滿足什么關系時,以A,E,C,F為頂點的四邊形是菱形?證明你的結論。
解:(1)∵四邊形ABCD是矩形,
∴OB=OD,AE∥CF,
∴∠E=∠F,∠OBE=∠ODF,
∴△BOE≌△DOF(AAS);
(2)當EF⊥AC時,四邊形AECF是菱形,
證明:∵四邊形ABCD是矩形,
∴OA=OC,
又由(1)△BOE≌△DOF得,OE=OF,
∴四邊形AECF是平行四邊形,
又EF⊥AC,
∴四邊形AECF是菱形。
練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

精英家教網如圖,矩形ABCD中,AB=6,BC=8,M是BC的中點,DE⊥AM,E是垂足,則△ABM的面積為
 
;△ADE的面積為
 

查看答案和解析>>

科目:初中數學 來源: 題型:

精英家教網如圖,矩形ABCD中,AD=a,AB=b,要使BC邊上至少存在一點P,使△ABP、△APD、△CDP兩兩相似,則a、b間的關系式一定滿足( 。
A、a≥
1
2
b
B、a≥b
C、a≥
3
2
b
D、a≥2b

查看答案和解析>>

科目:初中數學 來源: 題型:

7、如圖,矩形ABCD中,AE⊥BD,垂足為E,∠DAE=2∠BAE,則∠CAE=
30
°.

查看答案和解析>>

科目:初中數學 來源: 題型:

(2008•懷柔區(qū)二模)已知如圖,矩形ABCD中,AB=3cm,BC=4cm,E是邊AD上一點,且BE=ED,P是對角線上任意一點,PF⊥BE,PG⊥AD,垂足分別為F、G.則PF+PG的長為
3
3
cm.

查看答案和解析>>

科目:初中數學 來源: 題型:

(2002•西藏)已知:如圖,矩形ABCD中,E、F是AB邊上兩點,且AF=BE,連結DE、CF得到梯形EFCD.
求證:梯形EFCD是等腰梯形.

查看答案和解析>>

同步練習冊答案