【題目】我市有一種可食用的野生菌,上市時,外商李經(jīng)理按市場價格30/千克收購了這種野生菌1000千克存放入冷庫中,據(jù)預(yù)測,該野生菌的市場價格將以每天每千克上漲1元;但冷凍存放這批野生菌時每天需要支出各種費用合計307元,而且這類野生菌在冷庫中最多保存160天,同時,平均每天有3千克的野生菌損壞不能出售.

1)若存放x天后,將這批野生菌一次性出售,設(shè)這批野生菌的銷售總額為P元,試寫出Px之間的函數(shù)關(guān)系式,并寫出自變量x的取值范圍.

2)李經(jīng)理將這批野生茵存放多少天后出售可獲得最大利潤W元?(利潤=銷售總額﹣收購成本﹣各種費用)

【答案】1P=﹣3x2+910x+300001≤x≤160,且x為整數(shù));(2存放100101天后出售可獲得最大利潤30300.

【解析】分析: )存放x天,每天損壞3千克,則剩下Px之間的函數(shù)關(guān)系式為.
2)依題意化簡得出wx之間的函數(shù)關(guān)系式,根據(jù)二次函數(shù)的性質(zhì)回答即可.

詳解:1)由題意得Px之間的函數(shù)關(guān)系式

,且x為整數(shù));

2)由題意得

它的圖象的對稱軸為直線

故當x=100101時,w最大=30300.

存放100101天后出售可獲得最大利潤30300.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】甲乙兩個工程隊承包了地鐵某標段全長3900米的施工任務(wù),分別從南,北兩個方向同時向前掘進。已知甲工程隊比乙工程隊平均每天多掘進0.4米經(jīng)過13天的施工兩個工程隊共掘進了156.

(1)求甲,乙兩個工程隊平均每天各掘進多少米?

(2)為加快工程進度兩工程隊都改進了施工技術(shù),在剩余的工程中,甲工程隊平均每天能比原來多掘進0.4米,乙工程隊平均每天能比原來多掘進0.6米,按此施工進度能夠比原來少用多少天完成任務(wù)呢?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】張老師元旦節(jié)期間到武商眾圓商場購買一臺某品牌筆記本電腦,恰逢商場正推出迎元旦促銷打折活動,具體優(yōu)惠情況如表:

購物總金額(原價)

折扣

不超過5000元的部分

九折

超過5000元且不超過10000元的部分

八折

超過10000元且不超過20000元的部分

七折

……

……

例如:若購買的商品原價為15000元,實際付款金額為:

5000×90%+100005000×80%+1500010000×70%12000元.

1)若這種品牌電腦的原價為8000/臺,請求出張老師實際付款金額;

2)已知張老師購買一臺該品牌電腦實際付費5700元.

①求該品牌電腦的原價是多少元/臺?

②若售出這臺電腦商場仍可獲利14%,求這種品牌電腦的進價為多少元/臺?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下列各式能用完全平方公式分解的是(

A.a2+2ax+4x2B.-a2-4ax+4x2

C.-2x+1+4x2D.x4+4+4x2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,點是正方形上任意一點,以為邊作正方形,連接,點是線段中點,射線交于點,連接

1)請直接寫出的數(shù)量關(guān)系和位置關(guān)系.

2)把圖1中的正方形繞點順時針旋轉(zhuǎn),此時點恰好落在線段上,如圖2,其他條件不變,(1)中的結(jié)論是否成立,請說明理由.

3)把圖1中的正方形繞點順時針旋轉(zhuǎn),此時點恰好分別落在線段、 上,連接,如圖3,其他條件不變,若,,直接寫出的長度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】直接寫出結(jié)果:

1)(﹣34   

2||   ,

3)﹣9+5   

4)﹣12+32   ,

5)﹣83   ,

6)(﹣23÷0.25×0   

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在ABCACD中,∠B=D,tanB=,BC=5,CD=3,BCA=90°﹣BCD,則AD=_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,中,的中點

1)求證:四邊形是平行四邊形。

2)求證:四邊形是菱形。

3)如果時,求四邊形ADBE的面積

4)當 度時,四邊形是正方形(不證明)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,將矩形紙片ABCD沿對角線BD折疊C落在點E,BEAD于點F連接AE

求證:(1BFDF;

2)若AB6,AD8,BF的長

查看答案和解析>>

同步練習(xí)冊答案