【題目】探索:如圖1,在中,,.求證:

發(fā)現(xiàn):直角三角形中,如果有一個銳角等于,那么這個角所對的直角邊等于斜邊的_______

應用:如圖2,在中,,,點從點出發(fā)沿方向以秒的速度向點勻速運動,同時點從點出發(fā)沿方向以秒的速度向點勻速運動,當其中一個點到達終點時,另一個點也隨之停止運動.設(shè)點運動的時間是秒().過點于點,連接,

1)四邊形能夠成為菱形嗎?如果能,求出相應的值;如果不能,請說明理由;

2)當為何值時,為直角三角形?請說明理由.

【答案】探索:;發(fā)現(xiàn):一半;應用:(1)能,當秒時,四邊形為菱形;(2)當t=7.512秒時,△DEF為直角三角形

【解析】

探索:先判斷出BD=AC=AD,進而判斷出△ABD是等邊三角形,即可得出結(jié)論;
發(fā)現(xiàn):直接由發(fā)現(xiàn)得出結(jié)論;
應用:(1)能.首先證明四邊形AEFD為平行四邊形,當AE=AD時,四邊形AEFD為菱形,即60-4t=2t,解方程即可解決問題;
2)分三種情形討論①當∠DEF=90°時,②當∠EDF=90°時.③若∠EFD=90°,分別求解即可.

探索:作邊上的中線,

∵在中,,

,,

是等邊三角形

;

發(fā)現(xiàn):由探索知,直角三角形中,如果有一個銳角等于30°,那么這個角所對的直角邊等于斜邊的一半,
故答案為:一半;

應用:(1)能,理由如下:

中,,,

又∵,

,

,

,

又∵,

∴四邊形為平行四邊形.

時,四邊形為菱形,即,解得,

∴當秒時,四邊形為菱形;

2)①當時,由(1)知四邊形為平行四邊形,

,

,

,

,解得;

②當時,四邊形為矩形,

,則

,即

解得;

③若,則重合,重合,此種情況不存在.

綜上所述,當t=7.512秒時,△DEF為直角三角形.

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,某校一幢教學大樓的頂部豎有一塊傳承文明,啟智求真的宣傳牌CD.小明在山坡的坡腳A處測得宣傳牌底部D的仰角為60°,沿山坡向上走到B處測得宣傳牌頂部C的仰角為45°已知山坡AB的坡度i=1:,AB=10米,AE=15米,求這塊宣傳牌CD的高度(測角器的高度忽略不計,結(jié)果精確到0.1米參考數(shù)據(jù):1.414,1.732)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在一次數(shù)學課外活動中,小明同學在點P處測得教學樓A位于北偏東60°方向,辦公樓B位于南偏東45°方向.小明沿正東方向前進60米到達C處,此時測得教學樓A恰好位于正北方向,辦公樓B正好位于正南方向.求教學樓A與辦公樓B之間的距離(結(jié)果精確到0.1米).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】推理填空,如圖,已知∠A=F,∠C=D,試說明 BDCE

解:∵∠A=F(已知),

),

∴∠D+DBC=180° ),

又∵∠C=D(已知),

∴∠C+DBC=180°(等量代換),

BDCE

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,小葉與小高欲測量公園內(nèi)某棵樹DE的高度.他們在這棵樹正前方的一座樓亭前的臺階上的點A處測得這棵樹頂端D的仰角為30°,朝著這棵樹的方向走到臺階下的點C處,測得這棵樹頂端D的仰角為60°.已知點A的高度AB3 m,臺階AC的坡度為1,且B,C,E三點在同一條直線上,那么這棵樹DE的高度為(  )

A. 6 m B. 7 m C. 8 m D. 9 m

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】1)如圖,直線ab被直線c所截,ab,∠1=∠2.若∠340°,則∠4等于________

2)如圖,將三角形ABC沿BC方向平移3 cm得到三角形DEF,如果四邊形ABFD周長是28 cm,則三角形ABC的周長是________cm.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知雙曲線y=(k<0)經(jīng)過直角三角形OAB斜邊OA的中點D,且與直角邊AB相交于點C.若點A的坐標為(﹣6,4),則AOC的面積為( 。

A. 12 B. 9 C. 6 D. 4

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】一列快車由甲地開往乙地,一列慢車由乙地開往甲地,兩車同時出發(fā),勻速運動.快車離乙地的路程與行駛的時間之間的函數(shù)關(guān)系,如圖中線段AB所示.慢車離乙地的路程與行駛的時間之間的函數(shù)關(guān)系,如圖中線段OC所示.根據(jù)圖象進行以下研究.

快車的速度是________,慢車的速度是________;

ABOC的函數(shù)關(guān)系式.

何時快車離乙地的距離大于慢車離乙地的距離?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,RtABC中,∠C=90°,BC=15,斜邊AB的垂直平分線與∠CAB的平分線都交BCD點,則點D到斜邊AB的距離為___________.

查看答案和解析>>

同步練習冊答案