【題目】為了解全校學生上學的交通方式,我校九年級(21)班的5名同學聯(lián)合設計了一份調查問卷,對該校部分學生進行了隨機調查.按A(騎自行車)、B(乘公交車)、C(步行)、D(乘私家車)、E(其他方式)設置選項,要求被調查同學從中單選.并將調查結果繪制成條形統(tǒng)計圖1和扇形統(tǒng)計圖2,根據以上信息,解答下列問題:
(1)本次接受調查的總人數是 人,其中“步行”的人數是 人;
(2)在扇形統(tǒng)計圖中,“乘公交車”的人數所占的百分比是 ,“其他方式”所在扇形的圓心角度數是 ;
(3)已知這5名同學中有2名女同學,要從中選兩名同學匯報調查結果.請你用列表法或畫樹狀圖的方法,求出恰好選出1名男生和1名女生的概率.
【答案】(1) 300,88;(2)42%,24°;(3).
【解析】試題分析:(1)用騎自行車的人數除以它所占的百分比即可得到調查的總人數,再用總人數-騎自行車的人數-乘公交車的人數-私家車的人數-其他方式的人數即可得到“步行”的人數;
(2)用“乘公交車”的人數÷總人數即可得到其所占的百分比,用“其他方式”的人數÷總人數再乘以360°得到“其他方式”所在扇形的圓心角度數;
(3)先畫樹狀圖展示所有20種等可能的結果數,再找出選出1名男生和1名女生的結果數,然后根據概率公式求解.
試題解析:解:(1)本次接受調查的總人數為54÷18%=300(人),“步行”的人數=300-54-126-12-20=88(人);
(2)“乘公交車”的人數所占的百分比是==42%;扇形統(tǒng)計圖中“其他方式”所在扇形的圓心角度數為×360°=24°;
(3)畫樹狀圖為:
共有20種等可能的結果數,其中選出1名男生和1名女生的結果數為12種,所以恰好選出1名男生和1名女生的概率==.
科目:初中數學 來源: 題型:
【題目】如圖正方形ABCD中,點E、F分別在CD、BC邊上,△AEF是等邊三角形.以下結論:①EC=FC;②∠AED=75°;③AF=CE;④EF的垂直平分線是直線AC.正確結論個數有( 。﹤.
A. 1B. 2C. 3D. 4
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖1,已知四邊形ABCD是正方形,對角線AC、BD相交于點E,以點E為頂點作正方形EFGH.
(1)如圖1,點A、D分別在EH和EF上,連接BH、AF,BH和AF有何數量關系,并說明理由;
(2)將正方形EFGH繞點E順時針方向旋轉,如圖2,判斷BH和AF的數量關系,并說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】某地為了解青少年實力情況,現隨機抽查了若干名初中學生進行視力情況統(tǒng)計,分為視力正常、輕度近視、重度近視三種情況,并繪成如圖所示的條形統(tǒng)計圖和扇形統(tǒng)計圖(不完整),請你根據圖中信息解答下列問題:
(1)求這次被抽查的學生一共有多少人?
(2)求被抽查的學生中輕度近視的學生人數,并將條形統(tǒng)計圖補充完整;
(3)若某地有萬名初中生,請估計視力不正常(包括輕度近視、重度近視)的學生共有多少人?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】甲、乙兩工程隊分別同時開挖兩條600米長的管道,所挖管道長度y(單位:米)與挖掘時間x(單位:天)之間的關系如圖所示,則下列說法中:①甲隊每天挖100米;②乙隊開挖兩天后,每天挖50米;③當x=4時,甲、乙兩隊所挖管道長度相同;④甲隊比乙隊提前2天完成任務.正確的是_____(直接填序號).
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,拋物線y=ax2+bx+c的頂點為B(1,﹣3),與x軸的一個交點A在(2,0)和(3,0)之間,下列結論中:①bc>0;②2a+b=0;③a﹣b+c>0;④a﹣c=3,正確的有( 。﹤
A. 4 B. 3 C. 2 D. 1
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖1,,點是直線、之間的一點,連接、.
(1)問題發(fā)現:
①若,,則___________.
②猜想圖1中、、的數量關系,并證明你的結論.
(2)拓展應用:
如圖2,,線段把這個封閉區(qū)域分為Ⅰ、Ⅱ兩部分(不含邊界),點是位于這兩個區(qū)域內的任意一點,請直接寫出、、的數量關系.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,已知一次函數y=kx+b的圖象與x軸交于點A,與反比例函數 (x<0)的圖象交于點B(﹣2,n),過點B作BC⊥x軸于點C,點D(3﹣3n,1)是該反比例函數圖象上一點.
(1)求m的值;
(2)若∠DBC=∠ABC,求一次函數y=kx+b的表達式.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】認真閱讀下面的材料,完成有關問題.
材料:在學習絕對值時,老師教過我們絕對值的幾何含義,一般地,點A、B在數軸上分別表示有理數a、b,那么A、B之間的距離可表示為|a﹣b|.
問題(1):點A、B、C在數軸上分別表示有理數x、﹣2、1,那么A到B的距離與A到C的距離之和可表示為 (用含絕對值的式子表示).
問題(2):利用數軸探究:①找出滿足|x﹣3|+|x+1|=6的x的所有值是 ;
②設|x﹣3|+|x+1|=p,當x的值取在不小于﹣1且不大于3的范圍時,p的值是不變的,而且是p的最小值,這個最小值是 ;當x的值取在 的范圍時,|x|+|x﹣2|的最小值是 .
問題(3):求|x﹣3|+|x﹣2|+|x+1|的最小值以及此時x的值.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com