【題目】已知拋物線C的解析式為y=ax2+bx+c,則下列說法中錯誤的是( )
A.a確定拋物線的形狀與開口方向
B.若將拋物線C沿y軸平移,則a,b的值不變
C.若將拋物線C沿x軸平移,則a的值不變
D.若將拋物線C沿直線l:y=x+2平移,則a、b、c的值全變

【答案】D
【解析】解:∵平移的基本性質(zhì):平移不改變圖形的形狀和大;
∴拋物線C的解析式為y=ax2+bx+c,a確定拋物線的形狀與開口方向;
若將拋物線C沿y軸平移,頂點發(fā)生了變化,對稱軸沒有變化,a的值不變,則﹣ 不變,所以b的值不變;
若將拋物線C沿直線l:y=x+2平移,則a的值不變,
故選D.
【考點精析】根據(jù)題目的已知條件,利用二次函數(shù)的圖象和二次函數(shù)的性質(zhì)的相關(guān)知識可以得到問題的答案,需要掌握二次函數(shù)圖像關(guān)鍵點:1、開口方向2、對稱軸 3、頂點 4、與x軸交點 5、與y軸交點;增減性:當(dāng)a>0時,對稱軸左邊,y隨x增大而減小;對稱軸右邊,y隨x增大而增大;當(dāng)a<0時,對稱軸左邊,y隨x增大而增大;對稱軸右邊,y隨x增大而減。

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,拋物線y=a(x﹣3)2+2(a>0)的頂點為A,過點A作y軸的平行線交拋物線y=﹣ x2﹣2于點B,則A、B兩點間的距離為

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系xOy中,已知拋物線y=x2﹣2mx+m2﹣9.

(1)求證:無論m為何值,該拋物線與x軸總有兩個交點;
(2)該拋物線與x軸交于A,B兩點,點A在點B的左側(cè),且OA<OB,與y軸的交點坐標(biāo)為(0,﹣5),求此拋物線的解析式;
(3)在(2)的條件下,拋物線的對稱軸與x軸的交點為N,若點M是線段AN上的任意一點,過點M作直線MC⊥x軸,交拋物線于點C,記點C關(guān)于拋物線對稱軸的對稱點為D,點P是線段MC上一點,且滿足MP= MC,連結(jié)CD,PD,作PE⊥PD交x軸于點E,問是否存在這樣的點E,使得PE=PD?若存在,求出點E的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,點E是正方形ABCD的邊DC上一點,把△ADE順時針旋轉(zhuǎn)△ABF的位置.

(1)旋轉(zhuǎn)中心是點 , 旋轉(zhuǎn)角度是度;
(2)若連結(jié)EF,則△AEF是三角形;并證明;
(3)若四邊形AECF的面積為25,DE=2,求AE的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某商店經(jīng)營兒童玩具,已知成批購進時的單價是20元.調(diào)查發(fā)現(xiàn):銷售單價是30元時,月銷售量是200件,而銷售單價每上漲2元,月銷售量就減少10件,但每件玩具售價不能高于40元.設(shè)每件玩具的銷售單價上漲了x元時,月銷售利潤為y元.
(1)求y與x的函數(shù)關(guān)系式并直接寫出自變量x的取值范圍.
(2)每件玩具的售價定為多少元時,月銷售利潤恰為2280元?
(3)每件玩具的售價定為多少元時,月銷售利潤達到最大?最大為多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知RtOBA,ABO=30°,OA=2,兩條直角邊重疊在互相的垂直的兩條直線上,線段PQ的端點P從點O出發(fā),沿OBA的邊按O→B→A→O運動一周,同時另一端點Q隨之在直線AO上運動,如果PQ=,那么當(dāng)點P運動一周時,Q運動的總路程為____________.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,△ABC是邊長為6cm的等邊三角形,點D從B點出發(fā)沿B→A方向在線段BA上以a cm/s速度運動,與此同時,點E從線段BC的某個端點出發(fā),以b cm/s速度在線段BC上運動,當(dāng)D到達A點后,D、E運動停止,運動時間為t(秒)

(1)如圖1,若a=b=1,點E從C出發(fā)沿C→B方向運動,連AE、CD,AE、CD交于F,連BF.當(dāng)0<t<6時:
①求∠AFC的度數(shù);
②求 的值;
(2)如圖2,若a=1,b=2,點E從B點出發(fā)沿B→C方向運動,E點到達C點后再沿C→B方向運動.當(dāng)t≥3時,連DE,以DE為邊作等邊△DEM,使M、B在DE兩側(cè),求M點所經(jīng)歷的路徑長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,有一艘貨船和一艘客船同時從港口A出發(fā),客船每小時比貨船多走5海里,客船與貨船速度的比為4:3,貨船沿東偏南10°方向航行,2小時后貨船到達B處,客船到達C處,若此時兩船相距50海里.

(1)求兩船的速度分別是多少?

(2)求客船航行的方向.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在梯形ABCD中,AD∥BC,BC=2AD,點F、G分別是邊BC、CD的中點,連接AF、FG,過點D作DE∥FG交AF于點E.

(1)求證:△AED≌△CGF;
(2)若梯形ABCD為直角梯形,∠B=90°,判斷四邊形DEFG是什么特殊四邊形?并證明你的結(jié)論;
(3)若梯形ABCD的面積為a(平方單位),則四邊形DEFG的面積為(平方單位).(只寫結(jié)果,不必說理)

查看答案和解析>>

同步練習(xí)冊答案