在△ABC中,∠A=90°,AB=8cm,AC=6cm,點M,點N同時從點A出發(fā),點M沿邊AB以4cm/s的速度向點B運動,點N從點A出發(fā),沿邊AC以3cm/s的速度向點C運動,(點M不與A,B重合,點N不與A,C重合),設(shè)運動時間為xs.
(1)求證:△AMN∽△ABC;
(2)當x為何值時,以MN為直徑的⊙O與直線BC相切?
(3)把△AMN沿直線MN折疊得到△MNP,若△MNP與梯形BCNM重疊部分的面積為y,試求y關(guān)于x的函數(shù)表達式,并求x為何值時,y的值最大,最大值是多少?

【答案】分析:(1)欲證△AMN∽△ABC,可以通過應(yīng)用兩組對應(yīng)邊的比相等且相應(yīng)的夾角相等的兩個三角形相似,(AM:AN=AB:AC=4:3,∠A=∠A)得出;
(2)MN為直徑的⊙O與直線BC相切,則圓心O到直線BC的距離等于半徑,列出函數(shù)關(guān)系式,求出x的值;
(3)因為∠A=90°,△MNP與梯形BCNM重疊部分的面積分為兩種情況:等于S△PMN,或等于S△MNP-S△PEF,列出y關(guān)于x的函數(shù)表達式,求出當時,y值最大,最大值是8.
解答:(1)證明:∵,∠A=∠A,
∴△AMN∽△ABC.(4分)

(2)解:在Rt△ABC中,BC==10.
由(1)知△AMN∽△ABC.

∴MN=5x,
∴⊙O的半徑r=
可求得圓心O到直線BC的距離d=
∵⊙O與直線BC相切
=.解得x=
當x=時,⊙O與直線BC相切.(8分)

(3)解:當P點落在直線BC上時,則點M為AB的中點.(9分)
故以下分兩種情況討論:
①當0<x≤1時,y=S△PMN=6x2
∴當x=1時,y最大=6×12=6.(11分)
②當1<x<2時,設(shè)MP交BC于E,NP交BC于F
MB=8-4x,MP=MA=4x
∴PE=4x-(8-4x)=8x-8
y=S△MNP-S△PEF==(13分)
∴當時,y最大=8.
綜上所述,當時,y值最大,最大值是8.(14分)
點評:考查了相似三角形的判斷,結(jié)合切線的性質(zhì),及三角形的性質(zhì)考查二次函數(shù)的綜合應(yīng)用.
練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

23、如圖,在△ABC中,CD⊥AB,垂足為D,點E在BC上,EF⊥AB,垂足為F.
(1)CD與EF平行嗎?為什么?
(2)如果∠1=∠2,且∠3=115°,求∠ACB的度數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

在△ABC中,∠C=90°,∠A=30°,以AB、AC為邊向△ABC外作等邊△ABD和等邊△ACE.
精英家教網(wǎng)
(1)如圖1.連接BE、CD,BE與CD交于點O,
①證明:DC=BE;
②∠BOC=
 
°. (直接填答案)
(2)如圖2,連接DE,交AB于點F.DF與EF相等嗎?證明你的結(jié)論.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

18、如圖,在△ABC中,邊AC的垂直平分線交BC于點D,交AC于點E、已知△ABC中與△ABD的周長分別為18cm和12cm,則線段AE的長等于
3
cm.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

在△ABC中,∠C=90°,BC=12,AB=13,則tanA的值是( 。
A、
5
12
B、
12
5
C、
12
13
D、
5
13

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

在△ABC中,a=
2
,b=
6
,c=2
2
,則最大邊上的中線長為( 。
A、
2
B、
3
C、2
D、以上都不對

查看答案和解析>>

同步練習冊答案