【題目】已知在△ABC中,∠B=90°,以AB上的一點O為圓心,以OA為半徑的圓交AC于點D,交AB于點E.
(1)求證:ACAD=ABAE;
(2)如果BD是⊙O的切線,D是切點,E是OB的中點,當BC=2時,求AC的長.

【答案】
(1)證明:連接DE,

∵AE是直徑,

∴∠ADE=90°,

∴∠ADE=∠ABC,

∵∠DAE=∠BAC,

∴△ADE∽△ABC,

,

∴ACAD=ABAE


(2)解:連接OD,

∵BD是⊙O的切線,

∴OD⊥BD,

在RT△OBD中,OE=BE=OD,

∴OB=2OD,

∴∠OBD=30°,

同理∠BAC=30°,

在RT△ABC中,AC=2BC=2×2=4


【解析】(1)連接DE,根據(jù)圓周角定理求得∠ADE=90°,得出∠ADE=∠ABC,進而證得△ADE∽△ABC,根據(jù)相似三角形對應邊成比例即可求得結(jié)論;(2)連接OD,根據(jù)切線的性質(zhì)求得OD⊥BD,在RT△OBD中,根據(jù)已知求得∠OBD=30°,進而求得∠BAC=30°,根據(jù)30°的直角三角形的性質(zhì)即可求得AC的長.

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,將一個由五個邊長為1的小正方形組成的圖形剪開可以拼成一個正方形.

(1)拼成的正方形的面積與邊長分別是多少?

(2)你能在圖中連結(jié)四個格點(每一個小正方形的頂點叫做格點),畫出一個面積為10的正方形嗎?如果不能,請說明理由;如果能,請在圖中畫出這個正方形.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】綜合與實踐

問題情境:在棱長為1的正方體右側(cè)拼搭若干個棱長小于或等于1的其它正方體,使拼成的立體圖形為一個長方體.如圖1,是兩個棱長為1的正方體搭成的長方體,圖2是從上面看這個長方體得到的平面圖形,它由兩個正方形組成.

操作探究:

(1)如圖3是在棱長為1的正方體右側(cè)拼搭了4個棱長小于1的正方體形成的長方體,請畫出從上面看這個長方體得到的平面圖形;

(2)已知一個長方體是按上述方式拼成的,組成它的正方體不超過10個,且若從上面看這個長方體得到的平面圖形由4個正方形組成.

請從A,B兩題中任選一題作答,我選擇   題.

A.請畫出從上面看這個長方體得到的平面圖形.(請畫出所有可能的圖形)

B.請畫出從上面看這個長方體得到的平面圖形.(請畫出所有可能的圖形,并在所畫圖形的下方直接寫出拼成該長方體所需的正方體的總個數(shù))

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知直線AB經(jīng)過點O,∠COD=90°,OE∠BOC的平分線.

(1)如圖1,若∠AOC=50°,求∠DOE;

(2)如圖1,若∠AOC=α,∠DOE;(用含α的式子表示)

(3)將圖1中的∠COD繞頂點O順時針旋轉(zhuǎn)到圖2的位置,其它條件不變,(2)中的結(jié)論是否還成立?試說明理由;

(4)將圖1中的∠COD繞頂點O逆時針旋轉(zhuǎn)到圖3的位置,其它條件不變,求∠DOE.(用含α的式子表示)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】二次函數(shù)y=ax2+bx+c(a≠0)的圖象如圖所示,下列結(jié)論:①2a+b=0;②a+c>b;③拋物線與x軸的另一個交點為(3,0);④abc>0.其中正確的結(jié)論是(填寫序號).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,等腰直角△ABC中,∠ACB=90°,點E為△ABC內(nèi)一點,且∠BEC=90°,將△BEC繞C點順時針旋轉(zhuǎn)90°,使BC與AC重合,得到△AFC,連接EF交AC于點M,已知BC=10,CF=6,則AM:MC的值為(
A.4:3
B.3:4
C.5:3
D.3:5

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,△ABC中,AB=AC,DE垂直平分AB,BE⊥AC,AF⊥BC,則∠EFC=°.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某市電力部門對一般照明用電實行“階梯電價”收費,具體收費標準如下:

第一檔:月用電量不超過240度的部分的電價為每度0.6元;

第二檔:月用電量超過240度但不超過400度部分的電價為每度0.65元;

第三檔:月用電量超過400度的部分的電價為每度0.9元.

(1)已知老王家去年5月份的用電量為380度,則老王家5月份應交電費  元;

(2)若去年6月份老王家用電的平均電價為0.70元,求老王家去年6月份的用電量;

(3)已知老王家去年7、8月份的用電量共500度(7月份的用電量少于8月份的用電量),兩個月的總電價是303元,求老王家7、8月的用電量分別是多少?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知拋物線y= x2 (b+1)x+ (b是實數(shù)且b>2)與x軸的正半軸分別交于點A、B(點A位于點B的左側(cè)),與y軸的正半軸交于點C.

(1)點B的坐標為 , 點C的坐標為(用含b的代數(shù)式表示);
(2)請你探索在第一象限內(nèi)是否存在點P,使得四邊形PCOB的面積等于2b,且△PBC是以點P為直角頂點的等腰直角三角形?如果存在,求出點P的坐標;如果不存在,請說明理由;
(3)請你進一步探索在第一象限內(nèi)是否存在點Q,使得△QCO,△QOA和△QAB中的任意兩個三角形均相似(全等可作相似的特殊情況)?如果存在,求出點Q的坐標;如果不存在,請說明理由.

查看答案和解析>>

同步練習冊答案