【題目】如圖,已知數(shù)軸上點(diǎn)A表示的數(shù)為6,B是數(shù)軸上一點(diǎn),且AB=10.動(dòng)點(diǎn)P從點(diǎn)O出發(fā),以每秒6個(gè)單位長(zhǎng)度的速度沿?cái)?shù)軸向右勻速運(yùn)動(dòng),設(shè)運(yùn)動(dòng)時(shí)間為t(t>0)秒.
(1)寫出數(shù)軸上點(diǎn)B表示的數(shù) ;當(dāng)t=3時(shí),OP=
(2)動(dòng)點(diǎn)R從點(diǎn)B出發(fā),以每秒8個(gè)單位長(zhǎng)度的速度沿?cái)?shù)軸向右勻速運(yùn)動(dòng),若點(diǎn)P,R同時(shí)出發(fā),問點(diǎn)R運(yùn)動(dòng)多少秒時(shí)追上點(diǎn)P?
(3)動(dòng)點(diǎn)R從點(diǎn)B出發(fā),以每秒8個(gè)單位長(zhǎng)度的速度沿?cái)?shù)軸向右勻速運(yùn)動(dòng),若點(diǎn)P,R同時(shí)出發(fā),問點(diǎn)R運(yùn)動(dòng)多少秒時(shí)PR相距2個(gè)單位長(zhǎng)度?
【答案】(1)-4,18;(2)2;(3)1或3.
【解析】
試題(1)由OB=AB-OA=10-6=4,得到數(shù)軸上點(diǎn)B表示的數(shù),OP=3×6=18;
(2)設(shè)點(diǎn)R運(yùn)動(dòng)x秒時(shí),在點(diǎn)C處追上點(diǎn)P,則OC=6x,BC=8x,由BC-OC=OB,得到8x-6x=4,解方程即可得到答案;
(3)設(shè)點(diǎn)R運(yùn)動(dòng)x秒時(shí),PR=2.分兩種情況:一種情況是點(diǎn)R在點(diǎn)P的左側(cè);另一種情況是點(diǎn)R在點(diǎn)P的右側(cè),分別列方程,然后解一元一次方程即可.
試題解析:(1)OB=AB-OA=10-6=4,所以數(shù)軸上點(diǎn)B表示的數(shù)是-4,OP=3×6=18;
(2)設(shè)點(diǎn)R運(yùn)動(dòng)x秒時(shí),在點(diǎn)C處追上點(diǎn)P,則OC=6x,BC=8x,∵BC-OC=OB,∴8x-6x=4,解得:x=2,∴點(diǎn)R運(yùn)動(dòng)2秒時(shí),在點(diǎn)C處追上點(diǎn)P;
(3)設(shè)點(diǎn)R運(yùn)動(dòng)x秒時(shí),PR=2.分兩種情況:一種情況是當(dāng)點(diǎn)R在點(diǎn)P的左側(cè)時(shí),8x=4+6x-2即x=1;另一種情況是當(dāng)點(diǎn)R在點(diǎn)P的右側(cè)時(shí),8x=4+6x+2即x=3.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,A(2,0)、B(0,3),過點(diǎn)B作直線∥x軸,點(diǎn)P(a,3)是直線上的動(dòng)點(diǎn),以AP為邊在AP右側(cè)作等腰RtAPQ,∠APQ=Rt∠,直線AQ交y軸于點(diǎn)C.
(1)當(dāng)a=1時(shí),則點(diǎn)Q的坐標(biāo)為;
(2)當(dāng)點(diǎn)P在直線上運(yùn)動(dòng)時(shí),點(diǎn)Q也隨之運(yùn)動(dòng).當(dāng)a=時(shí),AQ+BQ的值最小為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,每個(gè)最小方格的邊長(zhǎng)均為1個(gè)單位長(zhǎng)度,P1,P2,P3,…均在格點(diǎn)上,其順序按圖中“→”方向排列,如:P1(0,0),P2(0,1),P3(1,1),P4(1,-1),P5(-1,-1),P6(-1,2),…,根據(jù)這個(gè)規(guī)律,點(diǎn)P2 019的坐標(biāo)為_____
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】.E為□ABCD邊AD上一點(diǎn),將ABE沿BE翻折得到FBE,點(diǎn)F在BD上,且EF=DF.若∠C=52°,則∠ABE=____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】甲、乙兩工程隊(duì)承包一項(xiàng)工程,如果甲工程隊(duì)單獨(dú)施工,恰好如期完成;如果乙工程隊(duì)單獨(dú)施工就要超過6個(gè)月才能完成,現(xiàn)在甲、乙兩隊(duì)先共同施工4個(gè)月,剩下的由乙隊(duì)單獨(dú)施工,則恰好如期完成.
(1)問原來規(guī)定修好這條公路需多少長(zhǎng)時(shí)間?
(2)現(xiàn)要求甲、乙兩個(gè)工程隊(duì)都參加這項(xiàng)工程,但由于受到施工場(chǎng)地條件限制,甲、乙兩工程隊(duì)不能同時(shí)施工.已知甲工程隊(duì)每月的施工費(fèi)用為4萬元,乙工程隊(duì)每月的施工費(fèi)用為2萬元.為了結(jié)算方便,要求:甲、乙的施工時(shí)間為整數(shù)個(gè)月,不超過15個(gè)月完成.當(dāng)施工費(fèi)用最低時(shí),甲、乙各施工了多少個(gè)月?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,長(zhǎng)方形廣告牌架在樓房頂部,已知CD=2m,經(jīng)測(cè)量得到∠CAH=37°,∠DBH=60°,AB=10m,求GH的長(zhǎng).(參考數(shù)據(jù):tan37°≈0.75, ≈1.732,結(jié)果精確到0.1m)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知∠ADE=60°,DF平分∠ADE,∠1=30°,求證:DF∥BE
證明:∵DF平分∠ADE(已知)
∴__________=∠ADE( )
∵∠ADE=60°(已知)
∴_________________=30°( )
∵∠1=30°(已知)
∴____________________( )
∴____________________( )
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在網(wǎng)格中畫對(duì)稱圖形.
(1)如圖是五個(gè)小正方形拼成的圖形,請(qǐng)你移動(dòng)其中一個(gè)小正方形,重新拼成一個(gè)圖形,使得所拼成的圖形滿足下列條件,并分別畫在圖①、圖②、圖③中(只需各畫一個(gè),內(nèi)部涂上陰影);
①是軸對(duì)稱圖形,但不是中心對(duì)稱圖形;
②是中心對(duì)稱圖形,但不是軸對(duì)稱圖形;
③既是軸對(duì)稱圖形,又是中心對(duì)稱圖形.
(2)請(qǐng)你在圖④的網(wǎng)格內(nèi)設(shè)計(jì)一個(gè)商標(biāo),滿足下列要求:
①是頂點(diǎn)在格點(diǎn)的凸多邊形(不是平行四邊形);
②是中心對(duì)稱圖形,但不是軸對(duì)稱圖形;
③商標(biāo)內(nèi)部涂上陰影.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com