【題目】已知直徑,是直徑上一動(dòng)點(diǎn)(不與點(diǎn),重合),過點(diǎn)作直線,兩點(diǎn),上一點(diǎn)(不與點(diǎn),重合),且,直線交直線于點(diǎn)

如圖,當(dāng)點(diǎn)在線段上時(shí),試判斷的大小關(guān)系,并證明你的結(jié)論;

當(dāng)點(diǎn)在線段上,且時(shí),其它條件不變.

請(qǐng)你在圖中畫出符合要求的圖形,并參照?qǐng)D標(biāo)記字母;

判斷中的結(jié)論是否還成立,請(qǐng)說明理由.

【答案】見解析

【解析】

(1)AE=BE,可根據(jù)垂徑定理得出弧AB=BH,已知了弧AB=AF,因此弧BH=AF,根據(jù)圓周角定理可得出∠BAH=∠ABF根據(jù)等角對(duì)等邊即可得出AE=BE.(方法不唯一)
(2)結(jié)論不變,證法同(1),根據(jù)垂徑定理可得出弧AC=CH,因此弧AB=BH,由于弧AB=AF,因此弧AF=BH,即∠BAE=∠ABE,因此AE=BE.

證法①:

直徑,于點(diǎn)

又∵

證法②:

,

直徑,于點(diǎn)

又∵

證法③:

連接,交于點(diǎn)

又∵

又∵

①所畫圖形如圖所示,成立

證法①:

直徑,于點(diǎn)

證法②:

連接

直徑,于點(diǎn)

又∵

又∵

證法③:

連接并延長(zhǎng)于點(diǎn)

,過圓心

又∵于點(diǎn)

又∵直徑,

又∵

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,已知點(diǎn)O是邊AB、AC垂直平分線的交點(diǎn),點(diǎn)E是∠ABC、∠ACB角平分線的交點(diǎn),若∠O+E180°,則∠A_____度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖:已知等邊ABC中,DAC的中點(diǎn),EBC延長(zhǎng)線上的一點(diǎn),且CE=CD,DMBC,垂足為M.

(1)求∠E的度數(shù).

(2)求證:MBE的中點(diǎn).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知的外角的平分線交邊的垂直平分線于點(diǎn).于點(diǎn),于點(diǎn).

1)求證:

2)若,求的長(zhǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,∠AOB30°,點(diǎn)P為∠AOB內(nèi)一點(diǎn),OP8.點(diǎn)MN分別在OA、OB上.當(dāng)△PMN周長(zhǎng)最小時(shí),下列結(jié)論:①∠MPN等于120°;②∠MPN等于100°;③△PMN周長(zhǎng)最小值為4;④△PMN周長(zhǎng)最小值為8,其中正確的是( 。

A.①③B.②③C.①④D.②④

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知當(dāng),二次函數(shù)的值相等且大于零,若,,三點(diǎn)都在此函數(shù)的圖象上,則,的大小關(guān)系為(

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,平面直角坐標(biāo)系中,A0,3)、B30)、C(﹣3,0).

1)過B作直線MNAB,P為線段OC上的一動(dòng)點(diǎn),APPH交直線M于點(diǎn)H,證明:PAPH

2)在(1)的條件下,若在點(diǎn)A處有一個(gè)等腰RtAPQ繞點(diǎn)A旋轉(zhuǎn),且APPQ,∠APQ90°,連接BQ,點(diǎn)GBQ的中點(diǎn),試猜想線段OG與線段PG的數(shù)量關(guān)系與位置關(guān)系,并證明你的結(jié)論.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,△ABC和△DEC都是等腰直角三角形,∠ACB=∠DCE=90°,E在線段AC上,連接AD, BE的延長(zhǎng)線交AD于F.

(1)猜想線段BE、AD的數(shù)量關(guān)系和位置關(guān)系:_______________(不必證明);

(2)當(dāng)點(diǎn)E為△ABC內(nèi)部一點(diǎn)時(shí),使點(diǎn)D和點(diǎn)E分別在AC的兩側(cè),其它條件不變.

①請(qǐng)你在圖2中補(bǔ)全圖形;

②(1)中結(jié)論成立嗎?若成立,請(qǐng)證明;若不成立,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如果一個(gè)正整數(shù)能表示為兩個(gè)連續(xù)偶數(shù)的平方差,那么稱這個(gè)正整數(shù)為神秘?cái)?shù)”.

如:,,,因此,這三個(gè)數(shù)都是神秘?cái)?shù).

(1)是神秘?cái)?shù)嗎?為什么?

(2)設(shè)兩個(gè)連續(xù)偶數(shù)為(其中取非負(fù)整數(shù)),由這兩個(gè)連續(xù)偶數(shù)構(gòu)造的神秘?cái)?shù)是的倍數(shù)嗎?為什么?

(3)①若長(zhǎng)方形相鄰兩邊長(zhǎng)為兩個(gè)連續(xù)偶數(shù),試說明其周長(zhǎng)一定為神秘?cái)?shù).

②在①的條件下,面積是否為神秘?cái)?shù)?為什么?

查看答案和解析>>

同步練習(xí)冊(cè)答案