【題目】已知矩形ABCD的一條邊AD=8,將矩形ABCD折疊,使得頂點B落在CD邊上的P點處.如圖,已知折痕與邊BC交于點O,連接AP、OP、OA.
(1)求證:;
(2)若△OCP與△PDA的面積比為1:4,求邊AB的長.
【答案】(1)詳見解析;(2)10.
【解析】
①只需證明兩對對應(yīng)角分別相等可得兩個三角形相似;故.
②根據(jù)相似三角形的性質(zhì)求出PC長以及AP與OP的關(guān)系,然后在Rt△PCO中運用勾股定理求出OP長,從而求出AB長.
①∵四邊形ABCD是矩形,
∴AD=BC,DC=AB,∠DAB=∠B=∠C=∠D=90°.
由折疊可得:AP=AB,PO=BO,∠PAO=∠BAO,∠APO=∠B.
∴∠APO=90°.
∴∠APD=90°∠CPO=∠POC.
∵∠D=∠C,∠APD=∠POC.
∴△OCP∽△PDA.
∴.
②∵△OCP與△PDA的面積比為1:4,
∴OCPD=OPPA=CPDA=14√=12.
∴PD=2OC,PA=2OP,DA=2CP.
∵AD=8,
∴CP=4,BC=8.
設(shè)OP=x,則OB=x,CO=8x.
在△PCO中,
∵∠C=90,CP=4,OP=x,CO=8x,
∴x2=(8x)2+42.
解得:x=5.
∴AB=AP=2OP=10.
∴邊AB的長為10.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在Rt△ABC中,∠C=90°,AB=4,以AB的中點O為圓心作圓,圓O分別與AC、BC相切于點D、E兩點,則弧DE的長為__.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(2014山東淄博)如圖,四邊形ABCD中,AC⊥BD交BD于點E,點F,M分別是AB,BC的中點,BN平分∠ABE交AM于點N,AB=AC=BD,連接MF,NF.
(1)判斷△BMN的形狀,并證明你的結(jié)論;
(2)判斷△MFN與△BDC之間的關(guān)系,并說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,直角△ABC的三個頂點分別是A(﹣3,1),B(0,3),C(0,1)
(1)將△ABC以點C為旋轉(zhuǎn)中心旋轉(zhuǎn)180°,畫出旋轉(zhuǎn)后對應(yīng)的△A1B1C1;
(2)分別連結(jié)AB1、BA1后,求四邊形AB1A1B的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖山坡上有一根旗桿AB,旗桿底部B點到山腳C點的距離BC為米,斜坡BC的坡度i=1: .小明在山腳的平地F處測量旗桿的高,點C到測角儀EF的水平距離CF=1米,從E處測得旗桿頂部A的仰角為45°,旗桿底部B的仰角為20°.
(1)求坡角∠BCD;
(2)求旗桿AB的高度.
(參考數(shù)值:sin20°≈0.34,cos20°≈0.94,tan20°≈0.36)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,直線與反比例函數(shù)的圖象相交于點A(a,3),且與x軸相交于點B.
(1)求該反比例函數(shù)的表達式;(2)若P為y軸上的點,且△AOP的面積是△AOB的面積的,請直接寫出點P的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,拋物線交x軸于點,,交y軸于點C.
求拋物線的解析式;
如圖2,D點坐標(biāo)為,連結(jié)若點H是線段DC上的一個動點,求的最小值.
如圖3,連結(jié)AC,過點B作x軸的垂線l,在第三象限中的拋物線上取點P,過點P作直線AC的垂線交直線l于點E,過點E作x軸的平行線交AC于點F,已知.
求點P的坐標(biāo);
在拋物線上是否存在一點Q,使得成立?若存在,求出Q點坐標(biāo);若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,AD平分∠BAC交BC于點D,F為AD上一點,且BF=BD.BF的延長線交AC于點E.
(1)求證:ABAD=AFAC;
(2)若∠BAC=60°.AB=4,AC=6,求DF的長;
(3)若∠BAC=60°,∠ACB=45°,直接寫出的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(1)如圖1,在五邊形ABCDE中,AB=AE,∠B=∠BAE=∠AED=90°,∠CAD=45°,試猜想BC,CD,DE之間的數(shù)量關(guān)系.小明經(jīng)過仔細(xì)思考,得到如下解題思路:
將△ABC繞點A逆時針旋轉(zhuǎn)90°至△AEF,由∠B=∠AED=90°,得∠DEF=180°,即點D,E,F三點共線,易證△ACD≌ ,故BC,CD,DE之間的數(shù)量關(guān)系是 ;
(2)如圖2,在四邊形ABCD中,AB=AD,∠ABC+∠D=180°,點E,F分別在邊CB,DC的延長線上,∠EAF=∠BAD,連接EF,試猜想EF,BE,DF之間的數(shù)量關(guān)系,并給出證明.
(3)如圖3,在△ABC中,∠BAC=90°,AB=AC,點D,E均在邊BC上,且∠DAE=45°,若BD=2,CE=3,則DE的長為 .
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com