【題目】如圖,是⊙的直徑,是⊙的弦,點(diǎn)延長(zhǎng)線的一點(diǎn),平分交⊙于點(diǎn),過(guò)點(diǎn),垂足為點(diǎn)

1)求證:是⊙的切線;

2)若,求⊙的半徑.

【答案】1)見(jiàn)解析;(22.5

【解析】

1)連接CO,易得∠OCA=OAC,由AC平分∠FAB,得∠CAE=OAC,從而得∠OCA=CAE,,進(jìn)而即可得OCFD,即可得到結(jié)論;

2)連接BC,由勾股定理得AC=,易得△ABC∽△ACE,從而得,進(jìn)而即可求解.

1)連接CO,

OA=OC,

∴∠OCA=OAC,

AC平分∠FAB,

∴∠CAE=OAC

∴∠OCA=CAE,

OCFD,

CEDF,

OCCE,

CE是⊙O的切線;

2)連接BC,

RtACE中,AC=,

AB是⊙O的直徑,

∴∠BCA=90°,

∴∠BCA=CEA

∵∠CAE=CAB,

∴△ABC∽△ACE

,

AB=5,

AO=2.5,即⊙O的半徑為2.5

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,正方形的頂點(diǎn)的坐標(biāo)為,點(diǎn)軸正半軸上,點(diǎn)在第三象限的雙曲線上,過(guò)點(diǎn)軸交雙曲線于點(diǎn),連接,則的面積為__________

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角系中,點(diǎn)Ax軸正半軸上,點(diǎn)By軸正半軸上,∠ABO30°,AB2,以AB為邊在第一象限內(nèi)作等邊△ABC,反比例函數(shù)的圖象恰好經(jīng)過(guò)邊BC的中點(diǎn)D,邊AC與反比例函數(shù)的圖象交于點(diǎn)E

1)求反比例函數(shù)的解析式;

2)求點(diǎn)E的橫坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】小明在一次數(shù)學(xué)興趣小組活動(dòng)中,對(duì)一個(gè)數(shù)學(xué)問(wèn)題作如下探究:

問(wèn)題情境:(1)如圖1,四邊形中,,點(diǎn)邊的中點(diǎn),連接并延長(zhǎng)交的延長(zhǎng)線于點(diǎn),求證:;(表示面積)

問(wèn)題遷移:(2)如圖2:在已知銳角內(nèi)有一個(gè)定點(diǎn).過(guò)點(diǎn)任意作一條直線分別交射線于點(diǎn).小明將直線繞著點(diǎn)旋轉(zhuǎn)的過(guò)程中發(fā)現(xiàn),的面積存在最小值,請(qǐng)問(wèn)當(dāng)直線在什么位置時(shí),的面積最小,并說(shuō)明理由.

實(shí)際應(yīng)用:(3)如圖3,若在道路之間有一村莊發(fā)生疫情,防疫部門計(jì)劃以公路和經(jīng)過(guò)防疫站的一條直線為隔離線,建立個(gè)面積最小的三角形隔離區(qū),若測(cè)得試求的面積.(結(jié)果保留根號(hào))(參考數(shù)據(jù):)

拓展延伸:(4)如圖4,在平面直角坐標(biāo)系中,為坐標(biāo)原點(diǎn),點(diǎn)的坐標(biāo)分別為,過(guò)點(diǎn)的直線與四邊形一組對(duì)邊相交,將四邊形分成兩個(gè)四邊形,求其中以點(diǎn)為頂點(diǎn)的四邊形面積的最大值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,△ABC中,BC4,⊙P與△ABC的邊或邊的延長(zhǎng)線相切.若⊙P半徑為2,△ABC的面積為5,則△ABC的周長(zhǎng)為( )

A.8B.10C.13D.14

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】移動(dòng)通信公司建設(shè)的鋼架信號(hào)塔(如圖1),它的一個(gè)側(cè)面的示意圖(如圖2).CD是等腰三角形ABC底邊上的高,分別過(guò)點(diǎn)A、點(diǎn)B作兩腰的垂線段,垂足分別為B1,A1,再過(guò)A1B1分別作兩腰的垂線段所得的垂足為B2,A2,用同樣的作法依次得到垂足B3,A3,….若AB3米,sinα,則水平鋼條A2B2的長(zhǎng)度為( 。

A. B. 2C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】溫州茶山楊梅名揚(yáng)中國(guó),某公司經(jīng)營(yíng)茶山楊梅業(yè)務(wù),以3萬(wàn)元/噸的價(jià)格買入楊梅,包裝后直接銷售,包裝成本為1萬(wàn)元/噸,它的平均銷售價(jià)格y(單位:萬(wàn)元/噸)與銷售數(shù)量x2x10,單位:噸)之間的函數(shù)關(guān)系如圖所示.

1)若楊梅的銷售量為6噸時(shí),它的平均銷售價(jià)格是每噸多少萬(wàn)元?

2)當(dāng)銷售數(shù)量為多少時(shí),該經(jīng)營(yíng)這批楊梅所獲得的毛利潤(rùn)(w)最大?最大毛利潤(rùn)為多少萬(wàn)元?(毛利潤(rùn)=銷售總收入﹣進(jìn)價(jià)總成本﹣包裝總費(fèi)用)

3)經(jīng)過(guò)市場(chǎng)調(diào)查發(fā)現(xiàn),楊梅深加工后不包裝直接銷售,平均銷售價(jià)格為12萬(wàn)元/噸.深加工費(fèi)用y(單位:萬(wàn)元)與加工數(shù)量x(單位:噸)之間的函數(shù)關(guān)系是yx+32x10).

當(dāng)該公司買入楊梅多少噸時(shí),采用深加工方式與直接包裝銷售獲得毛利潤(rùn)一樣?

該公司買入楊梅噸數(shù)在   范圍時(shí),采用深加工方式比直接包裝銷售獲得毛利潤(rùn)大些?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】張琪和爸爸到曲江池遺址公園運(yùn)動(dòng),兩人同時(shí)從家出發(fā),沿相同路線前行,途中爸爸有事返回,張琪繼續(xù)前行5分鐘后也原路返回,兩人恰好同時(shí)到家張琪和爸爸在整個(gè)運(yùn)動(dòng)過(guò)程中離家的路點(diǎn)y1(米),y2(米)與運(yùn)動(dòng)時(shí)間x(分)之間的函數(shù)關(guān)系如圖所示

1)求爸爸返問(wèn)時(shí)離家的路程y2(米)與運(yùn)動(dòng)時(shí)間x(分)之間的函數(shù)關(guān)系式;

2)張琪開(kāi)始返回時(shí)與爸爸相距多少米?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】焦作市教育局為調(diào)查全市教師的運(yùn)動(dòng)情況,結(jié)合現(xiàn)今流行的“微信運(yùn)動(dòng)”,隨機(jī)調(diào)查了本市名老師某日“微信運(yùn)動(dòng)”中的步數(shù)情況進(jìn)行統(tǒng)計(jì)整理,繪制了如下的統(tǒng)計(jì)圖表:

步數(shù)

頻數(shù)

頻率

請(qǐng)根據(jù)以上信息,解答下列問(wèn)題:

1)寫出的值,并補(bǔ)全頻數(shù)分布直方圖;

2)本市約有名教師,結(jié)合調(diào)查的數(shù)據(jù)估計(jì)日行走步數(shù)超過(guò)步(包含步)的教師有多少名?

3)若在被調(diào)查的教師中,選取日行走步數(shù)超過(guò)步(包含步)的兩名教師與大家分享心得,求被選取的兩名教師恰好都在步(包含步)以上的概率.

查看答案和解析>>

同步練習(xí)冊(cè)答案