【題目】如圖,一段圓弧與長度為的正方形網(wǎng)格的交點(diǎn)是A、B、C

(1)請(qǐng)完成以下操作:

①以點(diǎn)O為原點(diǎn),垂直和水平方向?yàn)檩S,網(wǎng)格邊長為單位長,建立平面直角坐標(biāo)系;

②根據(jù)圖形提供的信息,標(biāo)出該圓弧所在圓的圓心D,并連接AD、CD

(2)請(qǐng)?jiān)冢?/span>1)的基礎(chǔ)上,完成下列填空:

①⊙D的半徑   (結(jié)果保留根號(hào)).

②點(diǎn)(-2,0)在⊙D   ;(填”、“內(nèi)”、“”)

③∠ADC的度數(shù)為   

【答案】(1)點(diǎn)D(2,0) ;(2) ;內(nèi);(3)900

【解析】

1)根據(jù)圖形和垂徑定理畫出圖形即可;

2)①根據(jù)勾股定理求出半徑即可;②根據(jù)點(diǎn)到圓心的距離即可得到結(jié)論;

③證△AOD≌△DFC根據(jù)全等得出∠OAD=CDF,即可求出答案

1)如圖1所示

;

2D的半徑為=2

OD=2∴|22|=42,(-2,0)在⊙D內(nèi)

故答案為:2;內(nèi)

③∵OA=DF=4CF=OD=2,AOD=DFC=90°,∴在△AOD和△DFC,∴△AOD≌△DFCSAS),∴∠OAD=CDF

∵∠AOD=90°,∴∠ADC=180°﹣(ADO+∠CDF)=180°﹣(ADO+∠OAD)=AOD

=90°.

故答案為:90°.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在△ABC中,∠ACB=90°,AC=BC,直線MN經(jīng)過點(diǎn)C,且ADMND,BEMNE

1)當(dāng)直線MN繞點(diǎn)C旋轉(zhuǎn)到圖1的位置時(shí),求證:ADC≌△CEB;DE=AD+BE;

2)當(dāng)直線MN繞點(diǎn)C旋轉(zhuǎn)到圖2的位置時(shí),求證:DE=ADBE

3)當(dāng)直線MN繞點(diǎn)C旋轉(zhuǎn)到圖3的位置時(shí),試問DEAD、BE具有怎樣的等量關(guān)系?請(qǐng)寫出這個(gè)等量關(guān)系,并加以證明.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四邊形ABCD中,AB=CD,BF=DE,AEBD,CFBD,垂足分別為E,F(xiàn).

(1)求證:ABE≌△CDF;

(2)若AC與BD交于點(diǎn)O,求證:AO=CO.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知,在ABC中,∠A=90°,AB=AC,點(diǎn)DBC的中點(diǎn).

(1)如圖①,若點(diǎn)E、F分別為AB、AC上的點(diǎn),且DEDF,求證:BE=AF;

(2)若點(diǎn)E、F分別為AB、CA延長線上的點(diǎn),且DEDF,那么BE=AF嗎?請(qǐng)利用圖②說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在邊長為4的等邊ABC.

(1)如圖1P,QBC邊上的兩點(diǎn),AP=AQ,∠BAP=18°,求∠AQB的度數(shù);

(2)點(diǎn)P,QBC邊上的兩個(gè)動(dòng)點(diǎn)(不與點(diǎn)B,C重合),點(diǎn)P在點(diǎn)Q的左側(cè),且AP=AQ,點(diǎn)Q關(guān)于直線AC的對(duì)稱點(diǎn)為M,連接AM,PM.依題意將圖2補(bǔ)全,并求證PA=PM

(3)(2)中,當(dāng)AM的值最小時(shí),直接寫出CM的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,點(diǎn)是線段的中點(diǎn),過點(diǎn)的射線的角,點(diǎn)為射線上一動(dòng)點(diǎn),給出以下四個(gè)結(jié)論:

①當(dāng),垂足為時(shí),;

②當(dāng)時(shí),;

③在射線上,使為直角三角形的點(diǎn)只有1個(gè);

④在射線上,使為等腰三角形的點(diǎn)只有1個(gè);

其中正確結(jié)論的序號(hào)是___

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知,,、在同一直線上,則的度數(shù)為__________.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在直線l上依次擺放著七個(gè)正方形,已知斜放置的三個(gè)正方形的面積分別為2、3、4,正放置的四個(gè)正方形的面積分別為S1,S2,S3,S4,則S1+S2+S3+S4=______

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】函數(shù)y=y=kx2-k(k≠0)在同一直角坐標(biāo)系中的圖象可能是(

A. B. C. D.

查看答案和解析>>

同步練習(xí)冊(cè)答案