在平面內(nèi)畫了若干個(gè)點(diǎn),任意三點(diǎn)都不在同一直線上,連接任意兩點(diǎn)共得到直線45條.
(1)問(wèn)該平面上共畫了多少個(gè)點(diǎn)?
(2)解決該問(wèn)題是否得到了一個(gè)一元二次方程?如果不是,指出得到的方程的名稱;如果是,求出這個(gè)方程的兩根之和、兩根之積,并求出兩根的倒數(shù)和.
分析:(1)根據(jù)過(guò)兩點(diǎn)的直線有1條,過(guò)不在同一直線上的三點(diǎn)的直線有3條,過(guò)任何三點(diǎn)都不在一條直線上四點(diǎn)的直線有6條,按此規(guī)律,由特殊到一般,總結(jié)出公式:平面內(nèi)任意三個(gè)點(diǎn)都不在同一直線上,平面內(nèi)有n個(gè)點(diǎn),一共可以畫直線的條數(shù)為
n(n-1)
2
;
(2)根據(jù)上題得到的方程進(jìn)行判定即可.
解答:解:(1)設(shè)平面內(nèi)有n個(gè)點(diǎn),一共可以畫(n-1)+…+4+3+2+1=
n(n-1)
2
=45,
整理得:n2-n-90=0
解得:n1=10或n2=-9(舍去),
答:該平面上共畫了10個(gè)點(diǎn);
(2)問(wèn)題中得到了方程:n2-n-90=0
是有關(guān)n的一元二次方程,兩根之和為1,兩根之積為-90,
1
n1
+
1
n2
=
n1+n2
n1n2
=-
1
90
;
點(diǎn)評(píng):本題考查了一元二次方程的應(yīng)用,解題的關(guān)鍵是總結(jié)出平面內(nèi)n個(gè)點(diǎn)連接任意兩點(diǎn)得到的直線的條數(shù).
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

在平面內(nèi)畫了若干個(gè)點(diǎn),任意三點(diǎn)都不在同一直線上,連接任意兩點(diǎn)共得到直線45條.
(1)問(wèn)該平面上共畫了多少個(gè)點(diǎn)?
(2)解決該問(wèn)題是否得到了一個(gè)一元二次方程?如果不是,指出得到的方程的名稱;如果是,求出這個(gè)方程的兩根之和、兩根之積,并求出兩根的倒數(shù)和.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

在平面內(nèi)畫了若干個(gè)點(diǎn),任意三點(diǎn)都不在同一直線上,連接任意兩點(diǎn)共得到直線45條.
(1)問(wèn)該平面上共畫了多少個(gè)點(diǎn)?
(2)解決該問(wèn)題是否得到了一個(gè)一元二次方程?如果不是,指出得到的方程的名稱;如果是,求出這個(gè)方程的兩根之和、兩根之積,并求出兩根的倒數(shù)和.

查看答案和解析>>

同步練習(xí)冊(cè)答案