【題目】如圖,四邊形ABCD內(nèi)接于⊙O,對(duì)角線(xiàn)AC為⊙O的直徑,過(guò)點(diǎn)C作CE⊥AC交AD的延長(zhǎng)線(xiàn)于點(diǎn)E,F為CE的中點(diǎn),連結(jié)DB,DF.
(1)求∠CDE的度數(shù).
(2)求證:DF是⊙O的切線(xiàn).
(3)若tan∠ABD=3時(shí),求的值.
【答案】(1)∠CDE=90°;(2)詳見(jiàn)解析;(3)=.
【解析】
(1)因?yàn)閷?duì)角線(xiàn)AC為⊙O的直徑,可得∠ADC=90°,即∠CDE=90°;
(2)連接OD,證明DF=CF,可得∠FDC=∠FCD,因?yàn)?/span>OD=OC,可得∠ODC=∠OCD,即∠ODF=∠OCF=90°,可得DF是⊙O的切線(xiàn);
(3)證明∠E=∠DCA=∠ABD,可得tan∠E=tan∠DCA=tan∠ABD=3,設(shè)DE=x,則CD=3x,AD=9x,在Rt△ADC中,求得AC的長(zhǎng),即可得出的值.
(1)∵對(duì)角線(xiàn)AC為⊙O的直徑,
∴∠ADC=90°,
∴∠CDE=180°-90°=90°;
(2)如圖,連接OD,
∵∠CDE=90°,F為CE的中點(diǎn),
∴DF=CF,
∴∠FDC=∠FCD,
∵OD=OC,
∴∠ODC=∠OCD,
∴∠FDC+∠ODC=∠FCD+∠OCD,即∠ODF=∠OCF,
∵CE⊥AC,
∴∠ODF=∠OCF=90°,即OD⊥DF,
∴DF是⊙O的切線(xiàn).
(3)∵∠E=90°-∠ECD=∠DCA=∠ABD,
∴tanE=tan∠DCA=tan∠ABD=3,
設(shè)DE=x,則CD=3x,AD=9x,
∴AC=,
∴=.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,點(diǎn)P從出發(fā),沿所示方向運(yùn)動(dòng),每當(dāng)碰到長(zhǎng)方形OABC的邊時(shí)會(huì)進(jìn)行反彈,反彈時(shí)反射角等于入射角,當(dāng)點(diǎn)P第2018次碰到長(zhǎng)方形的邊時(shí),點(diǎn)P的坐標(biāo)為______.
【答案】
【解析】
根據(jù)反射角與入射角的定義作出圖形;由圖可知,每6次反彈為一個(gè)循環(huán)組依次循環(huán),用2018除以6,根據(jù)商和余數(shù)的情況確定所對(duì)應(yīng)的點(diǎn)的坐標(biāo)即可.
解:如圖所示:經(jīng)過(guò)6次反彈后動(dòng)點(diǎn)回到出發(fā)點(diǎn),
,
當(dāng)點(diǎn)P第2018次碰到矩形的邊時(shí)為第337個(gè)循環(huán)組的第2次反彈,
點(diǎn)P的坐標(biāo)為.
故答案為:.
【點(diǎn)睛】
此題主要考查了點(diǎn)的坐標(biāo)的規(guī)律,作出圖形,觀(guān)察出每6次反彈為一個(gè)循環(huán)組依次循環(huán)是解題的關(guān)鍵.
【題型】填空題
【結(jié)束】
15
【題目】為了保護(hù)環(huán)境,某公交公司決定購(gòu)買(mǎi)A、B兩種型號(hào)的全新混合動(dòng)力公交車(chē)共10輛,其中A種型號(hào)每輛價(jià)格為a萬(wàn)元,每年節(jié)省油量為萬(wàn)升;B種型號(hào)每輛價(jià)格為b萬(wàn)元,每年節(jié)省油量為萬(wàn)升:經(jīng)調(diào)查,購(gòu)買(mǎi)一輛A型車(chē)比購(gòu)買(mǎi)一輛B型車(chē)多20萬(wàn)元,購(gòu)買(mǎi)2輛A型車(chē)比購(gòu)買(mǎi)3輛B型車(chē)少60萬(wàn)元.
請(qǐng)求出a和b;
若購(gòu)買(mǎi)這批混合動(dòng)力公交車(chē)每年能節(jié)省萬(wàn)升汽油,求購(gòu)買(mǎi)這批混合動(dòng)力公交車(chē)需要多少萬(wàn)元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某紀(jì)念品專(zhuān)賣(mài)店上周批發(fā)買(mǎi)進(jìn)100件A紀(jì)念品和300件B紀(jì)念品,花費(fèi)9600元;本周批發(fā)買(mǎi)進(jìn)200件A紀(jì)念品和100件B紀(jì)念品,花費(fèi)6200元.
(1)求每件A紀(jì)念品和B紀(jì)念品的批發(fā)價(jià)各為多少元?
(2)經(jīng)市場(chǎng)調(diào)研,當(dāng)A紀(jì)念品每件的銷(xiāo)售價(jià)為30元時(shí),每周可銷(xiāo)售200件;當(dāng)每件的銷(xiāo)售價(jià)每增加1元,每周的銷(xiāo)售數(shù)量將減少10件.當(dāng)每件的銷(xiāo)售價(jià)a為多少時(shí),該紀(jì)態(tài)品專(zhuān)賣(mài)店銷(xiāo)售A紀(jì)念品每周獲得的利潤(rùn)W最大?并求出最大利潤(rùn).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】年月,振華中學(xué)舉行了迎國(guó)慶中華傳統(tǒng)文化節(jié)活動(dòng).本次文化節(jié)共有五個(gè)活動(dòng):書(shū)法比賽;國(guó)畫(huà)競(jìng)技;詩(shī)歌朗誦;漢字大賽;古典樂(lè)器演奏.活動(dòng)結(jié)束后,某班數(shù)學(xué)興趣小組開(kāi)展了“我最喜愛(ài)的活動(dòng)”的抽樣調(diào)查(每人只選一項(xiàng)),根據(jù)收集的數(shù)據(jù)繪制了兩幅不完整的統(tǒng)計(jì)圖,請(qǐng)根據(jù)圖中信息,解答下列問(wèn)題:
(1)此次催記抽取的初三學(xué)生共 人, ,并補(bǔ)全條形統(tǒng)計(jì)圖;
(2)初三年級(jí)準(zhǔn)備在五名優(yōu)秀的書(shū)法比賽選手中任意選擇兩人參加學(xué)校的最終決賽,這五名選手中有三名男生和兩名女生,用樹(shù)狀圖或列表法求選出的兩名選手正好是一男一女的概率是多少.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】央視“經(jīng)典詠流傳”開(kāi)播以來(lái)受到社會(huì)廣泛關(guān)注.我市某校就“中華文化我傳承——地方戲曲進(jìn)校園”的喜愛(ài)情況進(jìn)行了隨機(jī)調(diào)查,對(duì)收集的信息進(jìn)行統(tǒng)計(jì),繪制了下面兩副尚不完整的統(tǒng)計(jì)圖.請(qǐng)你根據(jù)統(tǒng)計(jì)圖所提供的信息解答下列問(wèn)題:
圖中A表示“很喜歡”,B表示“喜歡”,C表示“一般”,D表示“不喜歡”.
(1)被調(diào)查的總?cè)藬?shù)是_____________人,扇形統(tǒng)計(jì)圖中C部分所對(duì)應(yīng)的扇形圓心角的度數(shù)為_______.
(2)補(bǔ)全條形統(tǒng)計(jì)圖;
(3)若該校共有學(xué)生1800人,請(qǐng)根據(jù)上述調(diào)查結(jié)果,估計(jì)該校學(xué)生中A類(lèi)有__________人;
(4)在抽取的A類(lèi)5人中,剛好有3個(gè)女生2個(gè)男生,從中隨機(jī)抽取兩個(gè)同學(xué)擔(dān)任兩角色,用樹(shù)形圖或列表法求出被抽到的兩個(gè)學(xué)生性別相同的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】閱讀對(duì)人成長(zhǎng)的影響是巨大的,一本好書(shū)往往能改變?nèi)说囊簧?/span>1995年聯(lián)合國(guó)教科文組織把每年4月23日確定為“世界讀書(shū)日”.如圖是某校三個(gè)年級(jí)學(xué)生人數(shù)分布扇形統(tǒng)計(jì)圖,其中八年級(jí)人數(shù)為400人,如表是該校學(xué)生閱讀課外書(shū)籍情況統(tǒng)計(jì)表.請(qǐng)你根據(jù)圖表中的信息,解答下列問(wèn)題:
圖書(shū)種類(lèi) | 頻數(shù) | 頻率 |
科普常識(shí) | 1600本 | B |
名人傳記 | 1280本 | 0.32 |
漫畫(huà)叢書(shū) | A本 | 0.24 |
其它 | 160本 | 0.04 |
(1)求該校八年級(jí)的人數(shù)占全??cè)藬?shù)的百分率為 ;
(2)表中A= ,B= ;
(3)該校學(xué)生平均每人讀多少本課外書(shū)?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖1,在平面直角坐標(biāo)系中,拋物線(xiàn)y=﹣x2+2x﹣與x軸交于A、B兩點(diǎn)(點(diǎn)A在點(diǎn)B的左側(cè)),與y軸交于點(diǎn)C,頂點(diǎn)為D,對(duì)稱(chēng)軸與x軸交于點(diǎn)E,直線(xiàn)CE交拋物線(xiàn)于點(diǎn)F(異于點(diǎn)C),直線(xiàn)CD交x軸交于點(diǎn)G.
(1)如圖1,求直線(xiàn)CE的解析式和頂點(diǎn)D的坐標(biāo);
(2)如圖1,點(diǎn)P為直線(xiàn)CF上方拋物線(xiàn)上一點(diǎn),連接PC、PF,當(dāng)△PCF的面積最大時(shí),點(diǎn)M是過(guò)P垂直于x軸的直線(xiàn)l上一點(diǎn),點(diǎn)N是拋物線(xiàn)對(duì)稱(chēng)軸上一點(diǎn),求FM+MN+NO的最小值;
(3)如圖2,過(guò)點(diǎn)D作DI⊥DG交x軸于點(diǎn)I,將△GDI沿射線(xiàn)GB方向平移至△G′D′I′處,將△G′D′I′繞點(diǎn)D′逆時(shí)針旋轉(zhuǎn)α(0<α<180°),當(dāng)旋轉(zhuǎn)到一定度數(shù)時(shí),點(diǎn)G′會(huì)與點(diǎn)I重合,記旋轉(zhuǎn)過(guò)程中的△G′D′I′為△G″D′I″,若在整個(gè)旋轉(zhuǎn)過(guò)程中,直線(xiàn)G″I″分別交x軸和直線(xiàn)GD′于點(diǎn)K、L兩點(diǎn),是否存在這樣的K、L,使△GKL為以∠LGK為底角的等腰三角形?若存在,求此時(shí)GL的長(zhǎng).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com