【題目】如圖,一個粒子在第一象限運動,在第一秒內(nèi),它從原點運動到(0,1),接著它按如圖所示的橫軸、縱軸的平行方向來回運動,(即(0,0)→(0,1)→(1,1)→(1,0)→ (2,0)→…),且每秒移動一個單位,那么粒子運動到點(3,0)時經(jīng)過了________秒,粒子運動60秒后的坐標(biāo)為_________________.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(7分)如圖,已知拋物線y=x2+bx+c經(jīng)過A(-1,0),B(3,0)兩點.
(1)求拋物線的解析式和頂點坐標(biāo);
(2)當(dāng)0<x<3時,求y的取值范圍;
(3)點P為拋物線上一點,若S△PAB=10,求出此時點P的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】甲乙兩人同時同地沿同一路線開始攀登一座600米高的山,甲的攀登速度是乙的1.2倍,他比乙早20分鐘到達(dá)頂峰.甲乙兩人的攀登速度各是多少?如果山高為米,甲的攀登速度是乙的倍,并比乙早分鐘到達(dá)頂峰,則兩人的攀登速度各是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(本題14分)如圖,拋物線y=x2+x+c與x軸的負(fù)半軸交于點A,與y軸交于點B,連結(jié)AB,點C(6, )在拋物線上,直線AC與y軸交于點D.
(1)求c的值及直線AC的函數(shù)表達(dá)式;
(2)點P在x軸正半軸上,點Q在y軸正半軸上,連結(jié)PQ與直線AC交于點M,連結(jié)MO并延長交AB于點N,若M為PQ的中點.
①求證:△APM∽△AON;
②設(shè)點M的橫坐標(biāo)為m,求AN的長(用含m的代數(shù)式表示).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,已知點A(0,a),點B(b,0),其中a,b滿足,點C(m,n)在第一象限,已知是2的立方根.
直接寫出A,B,C三點的坐標(biāo);
求出△ABC的面積;
如圖2,延長BC交y軸于D點,求點D的坐標(biāo);
如圖3,過點C作CE∥AB交y軸于E點,求E點的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖的網(wǎng)格線是由邊長為1的小正方形格子組成的, 小正方形的頂點叫格點,以格點為頂點的多邊形叫格點多邊形,小明研究發(fā)現(xiàn),內(nèi)部含有3個格點的四邊形的面積與該四邊形邊上的格點數(shù)有某種關(guān)系,請你觀察圖中的4個格點四邊形.設(shè)內(nèi)部含有3個格點的四邊形的面積為S,其各邊上格點的個數(shù)之和為 m,則S與m的關(guān)系為( )
A. B. C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,AB是⊙O的直徑,點C是中點,∠COB=60°,過點C作CE⊥AD,交AD的延長線于點E
(1)求證:CE為⊙O的切線;
(2)判斷四邊形AOCD是否為菱形?并說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com