【題目】如圖,在四邊形中,,.
(1)若于,于,判斷與數(shù)量關(guān)系,并說(shuō)明理由.
(2)如果,,求的度數(shù)。
【答案】(1)∠ADB=∠FEC,理由見(jiàn)解析;(2)95°.
【解析】
(1)根據(jù)角的關(guān)系可以得到AD∥BC,然后得到∠ADB=∠CBD,又BD∥EF,即可得到∠ADB=∠FEC.
(2)由AD∥BC,得到∠C=45°,根據(jù)三角形外角性質(zhì)得到∠DFE的度數(shù).
(1) ∠ADB=∠FEC.
理由如下:
∵,
∴,
∴(同旁?xún)?nèi)角互補(bǔ),兩直線(xiàn)平行),
∴(兩直線(xiàn)平行,內(nèi)錯(cuò)角相等),
∵,
∴
∴(根據(jù)垂直于同一直線(xiàn)的兩直線(xiàn)平行),
∴(兩直線(xiàn)平行,同位角相等),
∴∠ADB=∠FEC.
(2)∵
∴(兩直線(xiàn)平行,同旁?xún)?nèi)角互補(bǔ))
∵
∴
∵
∴(三角形的一個(gè)外角等于和它不相鄰的兩個(gè)內(nèi)角的和)
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖 1,一張△ABC 紙片,點(diǎn) M、N 分別是 AC、BC 上兩點(diǎn).
(1)若沿直線(xiàn) MN 折疊,使 C 點(diǎn)落在 BN 上,則∠AMC′與∠ACB 的數(shù)量關(guān)系是 ;
(2)若折成圖 2 的形狀.猜想∠AMC′、∠BNC′和∠ACB 的數(shù)量關(guān)系,并說(shuō)明理由.
猜想: .
理由:
(3)若折成圖3 的形狀,猜想∠AMC′、∠BNC′和∠ACB 的數(shù)量關(guān)系是 .(寫(xiě)出結(jié)論即可).
(4)將上述問(wèn)題推廣,如圖4,將四邊形 ABCD 紙片沿 MN 折疊,使點(diǎn) C、D 落在四邊形 ABNM 的內(nèi)部時(shí),∠AMD′+∠BNC′與∠C、∠D 之間的數(shù)量關(guān)系 是 (寫(xiě)出結(jié)論即可).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,等腰△ABC中,AB=AC=,BC=4,點(diǎn)B在y軸上,BC∥x軸,反比例函數(shù)(x>0)的圖像經(jīng)過(guò)點(diǎn)A,交BC于點(diǎn)D.
(1)若OB=3,求k的值;
(2)連接CO,若AB=BD,求四邊形ABOC的周長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,點(diǎn)D在AC上,點(diǎn)F、G分別在AC、BC的延長(zhǎng)線(xiàn)上,CE平分∠ACB交BD于點(diǎn)O,且∠EOD+∠OBF=180°,∠F=∠G.則圖中與∠ECB相等的角有( )
A. 6個(gè) B. 5個(gè) C. 4個(gè) D. 3個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】李明準(zhǔn)備進(jìn)行如下操作實(shí)驗(yàn),把一根長(zhǎng)40 cm的鐵絲剪成兩段,并把每段首尾相連各圍成一個(gè)正方形.
(1)要使這兩個(gè)正方形的面積之和等于58 cm2,李明應(yīng)該怎么剪這根鐵絲?
(2)李明認(rèn)為這兩個(gè)正方形的面積之和不可能等于48 cm2,你認(rèn)為他的說(shuō)法正確嗎?請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中有一個(gè)△ABC,頂點(diǎn)A(-1,3),B(2,0),C(-3,-1).
(1)畫(huà)出△ABC關(guān)于y軸的對(duì)稱(chēng)圖形△A1B1C1(不寫(xiě)畫(huà)法),并寫(xiě)出點(diǎn)A1,B1,C1的坐標(biāo);
(2)求△ABC的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】紅紅有兩把不同的鎖和四把不同的鑰匙,其中只有兩把鑰匙能打開(kāi)對(duì)應(yīng)的兩把鎖,用列表法或樹(shù)狀圖求概率.
(1)若取一把鑰匙,求紅紅一次打開(kāi)鎖的概率;
(2)若取兩把鑰匙,求紅紅恰好打開(kāi)兩把鎖的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,二次函數(shù)y=ax2+bx+c的圖象交x軸于A(﹣2,0),B(1,0),交y軸于C(0,2).
(1)求二次函數(shù)的解析式;
(2)連接AC,在直線(xiàn)AC上方的拋物線(xiàn)上是否存在點(diǎn)N,使△NAC的面積最大,若存在,求出這個(gè)最大值及此時(shí)點(diǎn)N的坐標(biāo),若不存在,說(shuō)明理由;
(3)若點(diǎn)M在x軸上,是否存在點(diǎn)M,使以B、C、M為頂點(diǎn)的三角形是等腰三角形,若存在,直接寫(xiě)出點(diǎn)M的坐標(biāo);若不存在,說(shuō)明理由;
(4)若P為拋物線(xiàn)上一點(diǎn),過(guò)P作PQ⊥BC于Q,在y軸左側(cè)的拋物線(xiàn)是否存在點(diǎn)P使△CPQ∽△BCO(點(diǎn)C與點(diǎn)B對(duì)應(yīng)),若存在,求出點(diǎn)P的坐標(biāo),若不存在,說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】依據(jù)國(guó)家實(shí)行的《國(guó)家學(xué)生體質(zhì)健康標(biāo)準(zhǔn)》,對(duì)懷柔區(qū)初一學(xué)生身高進(jìn)行抽樣調(diào)查,以便總結(jié)懷柔區(qū)初一學(xué)生現(xiàn)存的身高問(wèn)題,分析其影響因素,為學(xué)生的健康發(fā)展及學(xué)校體育教育改革提出合理項(xiàng)建議.已知懷柔區(qū)初一學(xué)生有男生840人,女生800人,他們的身高在150≤x<175范圍內(nèi),隨機(jī)抽取初一學(xué)生進(jìn)行抽樣調(diào)查.抽取的樣本中,男生比女生多2人,利用所得數(shù)據(jù)繪制如下統(tǒng)計(jì)圖表:
身高情況分組表
組別 | 身高(cm) |
A | 150≤x<155 |
B | 155≤x<160 |
C | 160≤x<165 |
D | 165≤x<170 |
E | 170≤x<175 |
根據(jù)統(tǒng)計(jì)圖表提供的信息,下列說(shuō)法中
①抽取男生的樣本中,身高在155≤x<165之間的學(xué)生有18人;
②初一學(xué)生中女生的身高的中位數(shù)在B組;
③抽取的樣本中,抽取女生的樣本容量是38;
④初一學(xué)生身高在160≤x<170之間的學(xué)生約有800人.
其中合理的是( 。
A.①②B.①④C.②④D.③④
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com