【題目】如圖,在△ABC中,D是∠BAC的平分線上一點,BD⊥AD于D,DE∥AC交AB于E,請說明AE=BE.
【答案】見解析
【解析】
試題分析:根據(jù)兩直線平行,內(nèi)錯角相等求出∠ADE=∠CAD,根據(jù)AD是∠BAC的平分線可以得到∠EAD=∠CAD,所以∠ADE=∠EAD,根據(jù)等角對等邊的性質(zhì)得AE=DE,又∠ADE+∠BDE=90°,∠EAD+∠ABD=90°,根據(jù)等角的余角相等的性質(zhì)∠ABD=∠BDE,所以BE=DE,因此AE=BE.
證明:∵DE∥AC,
∴∠ADE=∠CAD,
∵AD是∠BAC的平分線,
∴∠EAD=∠CAD,
∴∠ADE=∠EAD,
∴AE=DE,
∵BD⊥AD,
∴∠ADE+∠BDE=90°,∠EAD+∠ABD=90°,
∴∠ABD=∠BDE,
∴BE=DE,
∴AE=BE.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,直線y=kx+6與x軸、y軸分別交于點E、F,點E的坐標(biāo)為(﹣3,0),點A的坐標(biāo)為(﹣2.5,0).
(1)求k的值;
(2)若點P(x,y)是第二象限內(nèi)的直線上的一個動點,在點P的運動過程中,試寫出△OPA的面積S與x的函數(shù)關(guān)系式,并寫出自變量x的取值范圍;
(3)探究:當(dāng)點P運動到什么位置(求點P的坐標(biāo))時,△OPA的面積為5,并說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某班有20位同學(xué)參加圍棋、象棋比賽,甲說:“只參加一項的人數(shù)大于14人.”乙說:“兩項都參加的人數(shù)小于5人.”對于甲、乙兩人的說法,有下列命題,其中是真命題的是( )
A. 若甲對,則乙對 B. 若乙對,則甲對
C. 若乙錯,則甲錯 D. 若甲錯,則乙對
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】有下列命題:①若a+b>0且ab>0,則a>0且b>0;②若a>b且ab>0,則a>b>0;③一個銳角的補角比它的余角小90°.其中屬于真命題的是______(填序號).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】一元二次方程x2﹣8x﹣1=0配方后可變形為( )
A.(x+4)2=17
B.(x+4)2=15
C.(x﹣4)2=17
D.(x﹣4)2=15
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:等腰三角形兩邊長分別為9cm,5cm,則周長是( )
A. 19cm B. 23cm C. 19cm或23cm D. 不能確定
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知∠A=n°,若P1點是∠ABC和外角∠ACE的角平分線的交點,P2點是∠P1BC和外角∠P1CE的角平分線的交點,P3點是∠P2BC和外角∠P2CE的交點…依此類推,則∠Pn=( )
A. B. C. D.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com