【題目】某經(jīng)銷店為某工廠代銷一種建筑材料(這里的代銷是指廠家先免費提供資源,待貨物出售后再進行結(jié)算,未出售的由廠家負責(zé)處理)。當(dāng)每噸售價為260元時,月銷售量為45噸,該經(jīng)銷店為提高經(jīng)營利潤,準備采取降價的方式進行促銷。經(jīng)市場調(diào)查發(fā)現(xiàn):當(dāng)每噸售價每降低10元時,月銷售量就會增加7.5噸,綜合考慮各種因素,每售出一噸建筑材料共需支付廠家及其它費用元.

當(dāng)每噸售價為元時,月銷售量為噸,求出之間的函數(shù)解析式;

在遵循“薄利多銷”的原則下,問每噸材料售價為多少時,該經(jīng)銷店的月利潤為元;

若在規(guī)定每噸售價不得超過元的情況下,當(dāng)每噸售價定為多少元時,經(jīng)銷店的月利潤最大

【答案】(1);(2)每噸材料售價為元;(3)當(dāng)每噸售價定為元時,經(jīng)銷店的月利潤最大

【解析】

1)因為每噸售價每下降10元時,月銷售量就會增加7.5噸,現(xiàn)在售價為元,下降,銷量增加,即可求出關(guān)系式.

2)該經(jīng)銷店計劃月利潤為9000元而且盡可能地擴大銷售量,以9000元做為等量關(guān)系可列出方程求解.

3)設(shè)銷售額w元,求出銷售額w與售價的函數(shù)關(guān)系式,當(dāng)月利潤最大,x210元,此時每噸售價不得超過元,月銷售額w最大,即可得出答案.

當(dāng)售價定為每噸元時,月銷量

由題意

化簡得

解得

因為要遵循“薄利多銷”的原則,所以

每噸材料售價為元;

設(shè)當(dāng)每噸原料售價為元時,月利潤為

開口向下,

有最大值

當(dāng)時,的值最大

,

每噸售價定為元符合要求

當(dāng)每噸售價定為元時,經(jīng)銷店的月利潤最大.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標系中,已知△ABC的三個頂點的坐標分別為A(﹣3,5),B(﹣21),C(﹣13).

1)若△ABC經(jīng)過平移后得到△A1B1C1,已知點C的對應(yīng)點C的坐標為(4,﹣1),畫出△A1B1C1并寫出頂點AB對應(yīng)點A1,B1的坐標;

2)將△ABC繞著點O按順時針方向旋轉(zhuǎn)90°得到△A2B2C2,畫出△A2B2C2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在“停課不停學(xué)”期間,小明用電腦在線上課,圖1是他的電腦液晶顯示器的側(cè)面圖,顯示屏AB可以繞O點旋轉(zhuǎn)一定角度.研究表明:當(dāng)眼睛E與顯示屏頂端A在同一水平線上,且望向顯示器屏幕形成一個18°俯角(即望向屏幕中心P的的視線EP與水平線EA的夾角∠AEP)時,對保護眼睛比較好,而且顯示屏頂端A與底座C的連線AC與水平線CD垂直時(如圖2)時,觀看屏幕最舒適,此時測得∠BCD30°,∠APE90°,液晶顯示屏的寬AB32cm

1)求眼睛E與顯示屏頂端A的水平距離AE;(結(jié)果精確到1cm

2)求顯示屏頂端A與底座C的距離AC.(結(jié)果精確到1cm)(參考數(shù)據(jù):sin18°0.3cos18°0.9,tan18°0.3,1.41.7

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,四邊形內(nèi)接于為直徑,

過點于點的延長線于點,連接于點

求證: 的切線;

若點的中點,求證:

,求的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,四邊形ABCD是平行四邊形,以點A為圓心、AB的長為半徑畫弧交AD于點F,再分別以點B,F為圓心、大于BF的長為半徑畫弧,兩弧交于點M,作射線AMBC于點E,連接EF.下列結(jié)論中不一定成立的是(  )

A. BEEFB. EFCDC. AE平分∠BEFD. ABAE

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某校舉行了“防溺水”知識競賽,八年級兩個班選派10名同學(xué)參加預(yù)賽,依據(jù)各參賽選手的成績(均為整數(shù))繪制了統(tǒng)計表和折線統(tǒng)計圖(如圖所示).

(1)統(tǒng)計表中,a=________, b =________;

(2)若從兩個班的預(yù)賽選手中選四名學(xué)生參加決賽,其中兩個班的第一名直接進入決賽,另外兩個名額 在成績?yōu)?/span>98分的學(xué)生中任選兩個,求另外兩個決賽名額落在不同班級的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】“端午節(jié)”是我國的傳統(tǒng)佳節(jié),民間歷來有吃“粽子”的習(xí)俗.我市某食品廠為了解市民對去年銷量較好的肉餡粽、豆沙餡粽、紅棗餡粽、蛋黃餡粽(以下分別用A、B、C、D表示)這四種不同口味粽子的喜愛情況,在節(jié)前對某居民區(qū)市民進行了抽樣調(diào)查,并將調(diào)查情況繪制成如下兩幅統(tǒng)計圖(尚不完整).

請根據(jù)以上信息回答:

(1)本次參加抽樣調(diào)查的居民有多少人?

(2)將兩幅不完整的圖補充完整;

(3)若居民區(qū)有8000人,請估計愛吃D粽的人數(shù);

(4)若有外型完全相同的A、B、C、D粽各一個,煮熟后,小王吃了兩個.用列表或畫樹狀圖的方法,求他第二個吃到的恰好是C粽的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】春節(jié)期間,某商場計劃購進甲、乙兩種商品,已知購進甲商品2件和乙商品3件共需270元;購進甲商品3件和乙商品2件共需230元.

1)求甲、乙兩種商品每件的進價分別是多少元?

2)商場決定甲商品以每件40元出售,乙商品以每件90元出售,為滿足市場需求,需購進甲、乙兩種商品共100件,且甲種商品的數(shù)量不少于乙種商品數(shù)量的4倍,請你求出獲利最大的進貨方案,并確定最大利潤.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】我們把11,2,3,5,8,13,21,,這組數(shù)稱為斐波那契數(shù)列,為了進一步研究,依次以這列數(shù)為半徑作90°圓弧 ,,,得到斐波那契螺旋線,然后順次連結(jié)P1P2,P2P3,P3P4,得到螺旋折線(如圖),已知點P1(0,1),P2(1,0)P3(0,-1),則該折線上的點P9的坐標為(

A. (6,24)B. (6,25)C. (524)D. (525)

查看答案和解析>>

同步練習(xí)冊答案