【題目】如圖,等邊△A1C1C2的周長為1,作C1D1⊥A1C2于D1 , 在C1C2的延長線上取點C3 , 使D1C3=D1C1 , 連接D1C3 , 以C2C3為邊作等邊△A2C2C3;作C2D2⊥A2C3于D2 , 在C2C3的延長線上取點C4 , 使D2C4=D2C2 , 連接D2C4 , 以C3C4為邊作等邊△A3C3C4;…且點A1 , A2 , A3 , …都在直線C1C2同側(cè),如此下去,則△A1C1C2 , △A2C2C3 , △A3C3C4 , …,△AnCnCn+1的周長和為 . (n≥2,且n為整數(shù))
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某農(nóng)場種植一種蔬菜,銷售員張平根據(jù)往年的銷售情況,對今年這種蔬菜的銷售價格進行了預(yù)測,預(yù)測情況如圖,圖中的拋物線(部分)表示這種蔬菜銷售價與月份之間的關(guān)系.觀察圖象,你能得到關(guān)于這種蔬菜銷售情況的哪些信息?答題要求:(1)請?zhí)峁┧臈l信息;(2)不必求函數(shù)的解析式.(注:此題答案不唯一,以上答案僅供參考.若有其它答案,只要是根據(jù)圖象得出的信息,并且敘述正確都可以)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下列事件中是必然事件的是( )
A.任意畫一個正五邊形,它是中心對稱圖形
B.實數(shù)x使式子 有意義,則實數(shù)x>3
C.a,b均為實數(shù),若a= ,b= ,則a>b
D.5個數(shù)據(jù)分別是:6,6,3,2,1,則這組數(shù)據(jù)的中位數(shù)是3
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AD是△ABC的角平分線,DF⊥AB,垂足為F,DE=DG,△ADG和△AED的面積分別為48和36,求△EDF的面積________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,要設(shè)計一個等腰梯形的花壇,花壇上底120米,下底180米,上下底相距80米,在兩腰中點連線(虛線)處有一條橫向甬道,上下底之間有兩條縱向甬道,各甬道的寬度相等.設(shè)甬道的寬為x米.
(1)用含x的式子表示橫向甬道的面積;
(2)當三條甬道的面積是梯形面積的八分之一時,求甬道的寬;
(3)根據(jù)設(shè)計的要求,甬道的寬不能超過6米.如果修建甬道的總費用(萬元)與甬道的寬度成正比例關(guān)系,比例系數(shù)是5.7,花壇其余部分的綠化費用為每平方米0.02萬元,那么當甬道的寬度為多少米時,所建花壇的總費用最少?最少費用是多少萬元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,矩形ABCD中,點E,F,G,H分別在邊AB,BC,CD,DA上,點P在矩形ABCD內(nèi).若AB=4cm,BC=6cm,AE=CG=3cm,BF=DH=4cm,四邊形AEPH的面積為5cm2,則四邊形PFCG的面積為_______cm2.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標系中,A,B,C三點坐標分別為A(﹣6,3),B(﹣4,1),C(﹣1,1).
(1)如圖1,順次連接AB,BC,CA,得△ABC.
①點A關(guān)于x軸的對稱點A1的坐標是 , 點B關(guān)于y軸的對稱點B1的坐標是;
②畫出△ABC關(guān)于原點對稱的△A2B2C2;
③tan∠A2C2B2=;
(2)利用四邊形的不穩(wěn)定性,將第二象限部分由小正方形組成的網(wǎng)格,變化為如圖2所示的由小菱形組成的網(wǎng)格,每個小菱形的邊長仍為1個單位長度,且較小內(nèi)角為60°,原來的格點A,B,C分別對應(yīng)新網(wǎng)格中的格點A′,B′,C′,順次連接A′B′,B′C′,C′A′,得△A′B′C′,則tan∠A′C′B′= .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某廠生產(chǎn)上第世博會吉祥物:“海寶”紀念章10萬個,質(zhì)檢部門為檢測這批紀念章質(zhì)量的合格情況,從中隨機抽查500個,合格499個下列說法正確的是
A. 總體是10萬個紀念章的合格情況,樣本是500個紀念章的合格情況
B. 總體是10萬個紀念章的合格情況,樣本是499個紀念章的合格情況
C. 總體是500個紀念章的合格情況,樣本是500個紀念章的合格情況
D. 總體是10萬個紀念章的合格情況,樣本是1個紀念章的合格情況
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】完成下面推理過程:
已知:如圖,直線BC、AF相交于點E,AB∥CD,∠1=∠2,∠3=∠4.
求證:AD∥BE
證明:∵AB∥CD(已知)
∠4=∠______(______)
又∵∠3=∠4(已知)
∴∠3=∠______(等量代換)
∵∠1=∠2(已知)
∴∠1+∠CAE=∠2+∠CAE(等式的性質(zhì))
即∴∠3=∠______(等量代換)
∴AD∥BE(______).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com