已知A、B是拋物線y=x2-4x+3上位置不同的兩點(diǎn),且關(guān)于拋物線的對稱軸對稱,則點(diǎn)A、B的坐標(biāo)可能是    (寫出一對即可).
【答案】分析:此題是開放性題目,主要根據(jù)拋物線是軸對稱圖形的性質(zhì)寫出一組關(guān)于對稱軸對稱的點(diǎn)即可,如最簡單的一對點(diǎn)是與x軸的兩個交點(diǎn)(1,0)與(3,0).
解答:解:先找出這條拋物線的對稱軸x=2,當(dāng)y=0時,x=1和3.
∴點(diǎn)A、B的坐標(biāo)可能是(1,0)與(3,0).
點(diǎn)評:主要考查了拋物線的對稱性和點(diǎn)的坐標(biāo)的特點(diǎn).解題的關(guān)鍵是根據(jù)解析式得出對稱軸,結(jié)合函數(shù)解析式或圖象找出對稱的點(diǎn),最簡單的是與x軸的兩個交點(diǎn).
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

已知A,A是拋物線y=
1
2
x2上兩點(diǎn),A1B1,A3B3分別垂直于x軸,垂足分別為B1,B3,點(diǎn)C是線段A1A3的中點(diǎn),過點(diǎn)C作CB2垂直于x軸,垂足為B2,CB2交拋物線于點(diǎn)A2
精英家教網(wǎng)
(1)如圖1,已知A1,A3兩點(diǎn)的橫坐標(biāo)依次為1,3,求線段CA2的長;
(2)如圖2,若將拋物線y=
1
2
x2改為拋物線y=
1
2
x2-x+1,且A1,A2,A3三點(diǎn)的橫坐標(biāo)為連續(xù)的整數(shù),其他條件不變,求線段CA2的長;
(3)若將拋物線y=
1
2
x2改為拋物線y=ax2+bx+c(a>0),A1,A2,A3三點(diǎn)的橫坐標(biāo)為連續(xù)整數(shù),其他條件不變,試猜想線段CA2的長(用a,b,c表示,并直接寫出答案).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

4、已知A、B是拋物線y=x2-4x+3上位置不同的兩點(diǎn),且關(guān)于拋物線的對稱軸對稱,則點(diǎn)A、B的坐標(biāo)可能是
(1,0)或(3,0)
(寫出一對即可).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

已知x1、x2是拋物線y=x2-2(m-1)x+m2-7與x軸的兩個交點(diǎn)的橫坐標(biāo),且x12+x22=10.
求:(1)x1、x2的值;
(2)拋物線的頂點(diǎn)坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,已知直線x=-1是拋物線y=ax2+bx+c(a≠0)的對稱軸,則①abc、②a-b+c、③a+b+c、④2a-b、⑤3a-b,其中是負(fù)數(shù)的有( 。
A、1個B、2個C、3個D、4個

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

已知A、B是拋物線y=x2+2x-1上的兩點(diǎn)(A在B的左側(cè)),且AB與x軸平行,AB=4,則點(diǎn)A的坐標(biāo)為
 

查看答案和解析>>

同步練習(xí)冊答案