【題目】如圖,有一座拋物線形拱橋,在正常水位時(shí)水面AB的寬為20m,如果水位上升3m時(shí),水面CD的寬是10m.
(1)建立如圖所示的直角坐標(biāo)系,求此拋物線的解析式;
(2)現(xiàn)有一輛載有救援物資的貨車從甲地出發(fā)需經(jīng)過此橋開往乙地,已知甲地距此橋280km(橋長忽略不計(jì)).貨車正以每小時(shí)40km的速度開往乙地,當(dāng)行駛1小時(shí)時(shí),忽然接到緊急通知:前方連降暴雨,造成水位以每小時(shí)0.25m的速度持續(xù)上漲(貨車接到通知時(shí)水位在CD處,當(dāng)水位達(dá)到橋拱最高點(diǎn)O時(shí),禁止車輛通行),試問:如果貨車按原來速度行駛,能否安全通過此橋?若能,請(qǐng)說明理由;若不能,要使貨車安全通過此橋,速度應(yīng)超過每小時(shí)多少千米?
【答案】(1)拋物線的解析式為y=﹣x2;
(2)要使貨車安全通過此橋,貨車的速度應(yīng)超過60千米/時(shí).
【解析】試題分析:根據(jù)拋物線在坐標(biāo)系的位置,設(shè)拋物線的解析式為y=ax2,設(shè)D、B的坐標(biāo)求解析式;
試題解析:(1)設(shè)拋物線的解析式為y=ax2(a不等于0),橋拱最高點(diǎn)O到水面CD的距離為h米.
則D(5,﹣h),B(10,﹣h﹣3)
∴
解得
∴拋物線的解析式為y=﹣x2
(2)水位由CD處漲到點(diǎn)O的時(shí)間為:1÷0.25=4(小時(shí))
貨車按原來速度行駛的路程為:40×1+40×4=200<280
∴貨車按原來速度行駛不能安全通過此橋.
設(shè)貨車速度提高到x千米/時(shí)
當(dāng)4x+40×1=280時(shí),x=60
∴要使貨車安全通過此橋,貨車的速度應(yīng)超過60千米/時(shí).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC為等腰直角三角形,∠BCA=90°,AC=BC,點(diǎn)M、N在斜邊AB上,且∠MCN=45°,試探究線段AM,,MN,BN之間的關(guān)系,并說明理由。.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,過邊長為3的等邊三角形ABC的邊AB上一點(diǎn)P,作PE⊥AC于E,Q為BC延長線上一點(diǎn),問:若PA=CQ時(shí),連接PQ交AC邊于D,求DE的長?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某小組做“用頻率估計(jì)概率”的試驗(yàn)時(shí),統(tǒng)計(jì)了某一結(jié)果出現(xiàn)的頻率,繪制了如圖所示的折線統(tǒng)計(jì)圖,則符合這一結(jié)果的試驗(yàn)最有可能的是( )
A. 在“石頭、剪刀、布”的游戲中,小明隨機(jī)出的是“剪刀”
B. 一副去掉大小王的普通撲克牌洗勻后,從中任抽一張牌的花色是紅桃
C. 暗箱中有1個(gè)紅球和2個(gè)黃球,它們只有顏色上的區(qū)別,從中任取一球是黃球
D. 擲一個(gè)質(zhì)地均勻的正六面體骰子,向上的面點(diǎn)數(shù)是4
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,A(-1,0),B(2,-3)兩點(diǎn)在一次函數(shù)y2=-x+m與二次函數(shù)y1=ax2+bx-3的圖象上.
(1)求m的值和二次函數(shù)的解析式;
(2)請(qǐng)直接寫出使y2>y1時(shí),自變量x的取值范圍;
(3)說出所求的拋物線y1=ax2+bx-3可由拋物線y=x2如何平移得到?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:二次函數(shù)y=-x2+bx+c的圖象過點(diǎn)(-1,-8),(0,-3).
(1)求此二次函數(shù)的表達(dá)式,并用配方法將其化為y=a(x-h)2+k的形式;
(2)用五點(diǎn)法畫出此函數(shù)圖象的示意圖.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(1)如圖1,在△ABC中,BD、CD分別是△ABC兩個(gè)內(nèi)角∠ABC、∠ACB的平分線.
①若∠A=70°,求∠BDC的度數(shù).
②∠A=α,請(qǐng)用含有α的代數(shù)式表示∠BDC的度數(shù).(直接寫出答案)
(2)如圖2,BE、CE分別是△ABC兩個(gè)外角∠MBC、∠NCB的平分線.若∠A=α,請(qǐng)用含有α的代數(shù)式表示∠BEC的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】陳老師為了解七班同學(xué)對(duì)新聞、體育、娛樂、動(dòng)畫四類電視節(jié)目的喜歡情況,調(diào)查了全班名同學(xué)(每名同學(xué)必選且只能選擇這四類節(jié)目中的一類),并將調(diào)查結(jié)果繪制成如下不完整的條形統(tǒng)計(jì)圖和扇形統(tǒng)計(jì)圖.根據(jù)兩圖提供的信息,解答下列問題:
求喜歡娛樂節(jié)目的人數(shù),并將條形統(tǒng)計(jì)圖補(bǔ)充完整;
求扇形統(tǒng)計(jì)圖中喜歡體育節(jié)目的人數(shù)占全班人數(shù)的百分比和圓心角的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,點(diǎn)M的坐標(biāo)是(5,4),⊙M與y軸相切于點(diǎn)C,與x軸相交于A,B兩點(diǎn).
(1)請(qǐng)直接寫出A,B,C三點(diǎn)的坐標(biāo),并求出過這三點(diǎn)的拋物線解析式;
(2)設(shè)(1)中拋物線解析式的頂點(diǎn)為E,
求證:直線EA與⊙M相切;
(3)在拋物線的對(duì)稱軸上,是否存在點(diǎn)P,且點(diǎn)P在x軸的上方,使△PBC是等腰三角形?
如果存在,請(qǐng)求出點(diǎn)P的坐標(biāo);如果不存在,請(qǐng)說明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com