【題目】某商品的進價為每件40元,售價為每件50元,每個月可賣出210件;如果每件商品的售價每上漲l元,則每個月少賣l0件(每件售價不能高于65元).設每件商品的售價上x元(x為正整數),每個月的銷售利潤為y元.
(1)求y與x的函數關系式并直接寫出自變量戈的取值范圍;
(2)每件商品的售價定為多少元時,每個月可獲得最大利潤?最大的月利潤是多少元?
(3)每件商品的售價定為多少元時,每個月的利潤恰為2200元?
【答案】
(1)解:由題意得: , 且 為整數
(2)解:由(1)中的 與 的解析式配方得: .
∵ ,
∴當 時, 有最大值2402.5.
∵ 且 為整數,
當 時, , (元);當 時, , (元),
∴當售價定為每件55或56元時,每個月的利潤最大,最大的月利潤是2400元 。
(3)解:當 時, ,解得: , .
∴當 時, ;當 時, .
∴當售價定為每件51或60元時,每個月的利潤為2200元
【解析】(1)設每件商品的售價上x元(x為正整數),每個月的銷售利潤為y元,則一個月的銷量為(21010)件 ,單件的利潤為( 50 + x 40 ) 元, 根據銷售利潤等于銷售數量×單件利潤,得出y與x的函數關系式;直接寫出x的取值范圍即可;
(2)將由(1)中的 y 與 x 的解析式配方得: y = 10 ( x 5.5 ) 2 + 2402.5 .由于此函數的二次項系數 a = 10 < 0 ,從而得出當 x = 5.5 時, y 有最大值2402.5.又因0 < x ≤ 15 且 x 為整數,從而得出當 x = 5 時, 50 + x = 55 , y = 2400 (元);當 x = 6 時, 50 + x = 56 , y = 2400 (元);(3)把 y = 2200代入(1)得到的函數解析式,從而得出一個一元二次方程,求解得出x的值,然后得出結論。
科目:初中數學 來源: 題型:
【題目】如圖1,已知, 與互余, 平分.
(1)在圖1中,若,則______, ______.
(2)在圖1中,設, ,請?zhí)骄?/span>與之間的數量關系(必須寫出推理的主要過程,但每一步后面不必寫出理由);
(3)在已知條件不變的前提下,當繞著點O順時針轉動到如圖2的位置,此時與之間的數量關系是否還成立?若成立,請說明理由;若不成立,請直接寫出此時與之間的數量關系.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】一輛汽車在某次行駛過程中,油箱中的剩余油量y(升)與行駛路程x(千米)之間是一次函數關系,其部分圖象如圖所示.
(1)求y關于x的函數關系式;(不需要寫定義域)
(2)已知當油箱中的剩余油量為8升時,該汽車會開始提示加油,在此次行駛過程中,行駛了500千米時,司機發(fā)現離前方最近的加油站有30千米的路程,在開往該加油站的途中,汽車開始提示加油,這時離加油站的路程是多少千米?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖所示,將△MCD平移至△NBA.
(1)圖中平行且相等的線段有____________;
(2)圖中相等的角有_______________ (寫出三對即可);
(3)能夠完全重合的三角形是__________.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】為了推動陽光體育運動的廣泛開展,引導學生走向操場,走進大自然,走到陽光,積極參加體育鍛煉,學校準備購買一批運動鞋供學生借用,現從各年的隨機抽取了部分學生的鞋號,繪制了統(tǒng)計圖A和圖B,請根據相關信息,解答下列問題:
(1)本次隨機抽樣的學生數是多少?A中值是多少?
(2)本次調查獲取的樣本數據的眾數和中位數各是多少?
(3)根據樣本數據,若學校計劃購買200雙運動鞋,建議購買35號運動鞋多少雙?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,點A是圓0直徑BD延長線上的一點,點C在圓0上,AC=BC,AD=CD.
(1)求證:AC是圓0的切線;
(2)若⊙0的半徑為2,求 ABC的面積.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】問題情境:如圖,已知AB∥CD,∠1=∠2,求證:∠3=∠4.
解法展示:證明:延長BE交直線CD于點M,如圖所示.
∵AB∥CD,∴∠1=∠BMC(根據1).
∵∠1=∠2,∴∠2=∠BMC(根據2).
∴BE∥CF(根據3).
∴∠3=∠4(根據4).
反思交流:(1)解法展示中的根據1是______________,根據2是______________,根據3是_____________,根據4是____________.
(2)上述命題中,條件記為:①AB∥CD,②∠1=∠2,結論記為:③∠3=∠4.若把其中的一個條件和結論對調,得到一個新命題,寫出這個命題(用序號表示即可),判斷新命題的真假,并說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,將邊長為6的正三角形紙片ABC按如下順序進行兩次折疊,展開后,得折痕AD、BE.(如圖①),點O為其交點.如圖②,若P、N分別為BE、BC上的動點.如圖③,若點Q在線段BO上,BQ=1,則QN+NP+PD的最小值=_______.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】平面直角坐標系中,點A、B分別在x軸正半軸、y軸正半軸上,AO=BO,△ABO的面積為8.
(1)求點A的坐標;
(2)點C、D分別在x軸負半軸、y軸正半軸上(D在B點上方),AB⊥CD于E,設點D縱坐標為t,△BCE的面積為S,求S與t的函數關系;
(3)在(2)的條件下,點F為BE中點,連接OF交BC于G,當∠FOB+∠DAE=45°時,求點E坐標.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com