某商場試銷一種成本為50元/件的恤,規(guī)定試銷期間單價不低于成本單價,獲利又不得高于60%.經(jīng)試銷發(fā)現(xiàn),每天銷售量y(件)與銷售單價x(元/件)符合一次函數(shù)關系,試銷數(shù)據(jù)如下表:

售價(元/件)

……

55

60

70

……

銷量(件)

……

75

70

60

……

(1)求y與x的函數(shù)關系式;

(2)若該商場每天獲得利潤為w元,試寫出利潤w與銷售單價x之間的關系式;

(3)試銷期間商場每天獲利能否超過1375元,若能,銷售單價x應定在什么范圍,若不能請說明理由.

(1)設y與x的函數(shù)關系式為y=kx+b,將x=60,y=70;x=70,y=60分別代入

;解得k=-1,b=130………………………(2分)

∴y=-x+130……………………(3分)

(2),將y=-x+130代入得…………………(4分)

………………………(5分)

(3)根據(jù)題意得: ……………………(6分)

解得:……………………(7分)

試銷期間單價不低于成本單價,獲利又不得高于60%,所以50≤x≤80

不合題意,應舍去……………………(8分)

由于二次函數(shù)圖象的對稱軸為直線,當x<90時,利潤W隨單價x的增加而增加,……………………(9分)

所以當75<x≤80,W>1375.

答:銷期間商場每天能超過1375元,銷售單價應大于75元/件小于等于80元/件. ……………………(10分)

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

某商場試銷一種成本為50元/件的T恤,規(guī)定試銷期間單價不低于成本單價,又獲利不得高于50%.經(jīng)試銷發(fā)現(xiàn),銷售量y(件)與銷售單價x(元/件)符合一次函數(shù)關系,試銷數(shù)據(jù)如下表:
售價(元/件)  55 60 70
 銷量(件) 75 70 60
(1)求一次函數(shù)y=kx+b的表達式;
(2)若該商場獲得利潤為ω元,試寫出利潤ω與銷售單價x之間的關系式;銷售單價定為多少時,商場可獲得最大利潤,最大利潤是多少?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2012•如東縣一模)某商場試銷一種成本為每件60元的服裝,經(jīng)試銷發(fā)現(xiàn),銷售量y(件)與銷售單價x(元)符合一次函數(shù)y=kx+b,且x=65時,y=55;x=75時,y=45.
(1)求一次函數(shù)y=kx+b的表達式;
(2)若該商場獲得利潤為W元,試寫出利潤W與銷售單價x之間的關系式;
(3)銷售單價定為多少元時,商場可獲得最大利潤,最大利潤是多少元?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

某商場試銷一種成本為每件60元的服裝,規(guī)定試銷期間銷售單價不低于成本單價,且獲利不得高于50%,經(jīng)試銷發(fā)現(xiàn),銷售量y(件)與銷售單價x(元)的關系符合一次函數(shù)y=-x+140.
(1)直接寫出銷售單價x的取值范圍.
(2)若銷售該服裝獲得利潤為W元,試寫出利潤W與銷售單價x之間的關系式;銷售單價為多少元時,可獲得最大利潤,最大利潤是多少元?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2012•鄂爾多斯)某商場試銷一種成本為每件60元的T恤,規(guī)定試銷期間銷售單價不低于成本單價,且獲利不得高于40%.經(jīng)試銷發(fā)現(xiàn),銷售量y(件)與銷售單價x(元)之間的函數(shù)圖象如圖所示:
(1)求y與x之間的函數(shù)關系式,并寫出自變量x的取值范圍.
(2)若商場銷售這種T恤獲得利潤為W(元),求出利潤W(元)與銷售單價x(元)之間的函數(shù)關系式;并求出當銷售單價定為多少元時,商場可獲得最大利潤,最大利潤是多少元?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

某商場試銷一種成本為每件60元的服裝,規(guī)定試銷期間銷售單價不低于成本單價,且獲利不得高于50%,經(jīng)試銷發(fā)現(xiàn),銷售量y(件)與銷售單價x(元)的關系符合一次函數(shù)y=-x+140.
(1)直接寫出銷售單價x的取值范圍.
(2)若銷售該服裝獲得利潤為W元,試寫出利潤W與銷售單價x之間的關系式;銷售單價為多少元時,可獲得最大利潤,最大利潤是多少元?
(3)若獲得利潤不低于1200元,試確定銷售單價x的范圍.

查看答案和解析>>

同步練習冊答案