如圖,Rt△ABC的斜邊AB的中垂線MN與AC交于點(diǎn)M,∠A=15°,BM=2,則△AMB的面積為______.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
如圖,點(diǎn)C是⊙O的直徑AB延長線上的一點(diǎn),且有BO=BD=BC.
(1)求證:CD是⊙O的切線;
(2)若半徑OB=2,求AD的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
如圖,△ABC中,AB=AC,D是BC的中點(diǎn),AC的垂直平分線分別交AC,AD,AB于點(diǎn)E,O,F(xiàn),連接OC,OB,則圖中全等的三角形有
A. 1對(duì) B. 2對(duì) C. 3對(duì) D. 4對(duì)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
在△ABC中,∠A=60°,∠ABC,∠ACB所對(duì)的邊b,c滿足:b+c-4(b+c)+8=0.
(1)證明:△ABC是邊長為2的等邊三角形.
(2)若 b,c兩邊上的中線BD,CE交于點(diǎn)O,求OD:OB的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
三國時(shí)期吳國趙爽創(chuàng)制了“勾股圓方圖”(如圖)證明了勾股定理.在這幅“勾股圓方圖”中,大正方形ABCD是由4個(gè)全等的直角三角形再加上中間的那個(gè)小正方形EFGH組成的.若小正方形的邊長是1,每個(gè)直角三角形的短的直角邊長是3,則大正方形ABCD的面積是__________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
分別以下列四組數(shù)為一個(gè)三角形的邊長:(1)6、8、10,(2)5、12、13,(3)8、15、17,(4)4、5、6,其中能構(gòu)成直角三角形的有____________.(填序號(hào))
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com