【題目】如圖,在Rt△AOB中,∠AOB=90°,OA=3,OB=2,將Rt△AOB繞點O順時針旋轉(zhuǎn)90°后得Rt△FOE,將線段EF繞點E逆時針旋轉(zhuǎn)90°后得線段ED,分別以O,E為圓心,OA、ED長為半徑畫弧AF和弧DF,連接AD,則圖中陰影部分面積是( 。
A.π
B.
C.3+π
D.8﹣π
【答案】D
【解析】解:作DH⊥AE于H,
∵∠AOB=90°,OA=3,OB=2,
∴AB= = ,
由旋轉(zhuǎn)的性質(zhì)可知,OE=OB=2,DE=EF=AB= ,△DHE≌△BOA,
∴DH=OB=2,
陰影部分面積=△ADE的面積+△EOF的面積+扇形AOF的面積﹣扇形DEF的面積
= ×5×2+ ×2×3+ ﹣
=8﹣π,
故選:D.
【考點精析】根據(jù)題目的已知條件,利用扇形面積計算公式和旋轉(zhuǎn)的性質(zhì)的相關(guān)知識可以得到問題的答案,需要掌握在圓上,由兩條半徑和一段弧圍成的圖形叫做扇形;扇形面積S=π(R2-r2);①旋轉(zhuǎn)后對應的線段長短不變,旋轉(zhuǎn)角度大小不變;②旋轉(zhuǎn)后對應的點到旋轉(zhuǎn)到旋轉(zhuǎn)中心的距離不變;③旋轉(zhuǎn)后物體或圖形不變,只是位置變了.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系中,四邊形OABC的頂點O是坐標原點,點A在第一象限,點C在第四象限,點B在x軸的正半軸上.∠OAB=90°且OA=AB,OB,OC的長分別是一元二次方程x2﹣11x+30=0的兩個根(OB>OC).
(1)求點A和點B的坐標.
(2)點P是線段OB上的一個動點(點P不與點O,B重合),過點P的直線l與y軸平行,直線l交邊OA或邊AB于點Q,交邊OC或邊BC于點R.設點P的橫坐標為t,線段QR的長度為m.已知t=4時,直線l恰好過點C.當0<t<3時,求m關(guān)于t的函數(shù)關(guān)系式.
(3)當m=3.5時,請直接寫出點P的坐標.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系中,,,,,把一條長為2016個單位長度且沒有彈性的細線線的粗細忽略不計的一端固定在點A處,并按的規(guī)律繞在四邊形ABCD的邊上,則細線另一端所在位置的點的坐標是
A. B. C. D.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】以下條件不能判別四邊形ABCD是矩形的是( 。
A. AB=CD,AD=BC,∠A=90° B. OA=OB=OC=OD
C. AB=CD,AB∥CD,AC=BD D. AB=CD,AB∥CD,OA=OC,OB=OD
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】實驗中學為豐富學生的校園生活,準備一次性購買若干個足球和籃球(每個足球的價格相同,每個籃球的價格相同),若購買3個足球和2個籃球共需310元.購買2個足球和5個籃球共需500元.
(1)購買一個足球、一個籃球各需多少元?
(2)實驗中學實際需要一次性購買足球和籃球共96個.要求購買足球和籃球的總費用不超過5800元,這所中學最多可以購買多少個籃球?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,正方形OABC的邊長為2,以O為圓心,EF為直徑的半圓經(jīng)過點A,連接AE,CF相交于點P,將正方形OABC從OA與OF重合的位置開始,繞著點O逆時針旋轉(zhuǎn)90°,交點P運動的路徑長是 .
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在四邊形ABCD中,AB=6,BC=8,CD=24,AD=26,∠B=90°,以AD為直徑作圓O,過點D作DE∥AB交圓O于點E
(1)證明點C在圓O上;
(2)求tan∠CDE的值;
(3)求圓心O到弦ED的距離.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,□ABCD中,EF過對角線的交點O,AB=4,AD=3,OF=1,則四邊形BCEF的周長為( )
A. 8 B. 9 C. 12 D. 13
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com