(2005•沈陽)如圖1,直線y=-x+3與x軸相交于點A,與y軸相交于點B,點C(m,n)是第二象限內(nèi)任意一點,以點C為圓心的圓與x軸相切于點E,與直線AB相切于點F.

(1)當(dāng)四邊形OBCE是矩形時,求點C的坐標(biāo);
(2)如圖2,若⊙C與y軸相切于點D,求⊙C的半徑r;
(3)求m與n之間的函數(shù)關(guān)系式;
(4)在⊙C的移動過程中,能否使△OEF是等邊三角形(只回答“能”或“不能”)(沈陽05)
【答案】分析:(1)因為直線y=-x+3與x軸相交于點A,與y軸相交于點B,所以分別令x=0,y=0,可求出A(4,0),B(0,3),所以O(shè)A=4,OB=3,AB=5,連接CF,當(dāng)四邊形OBCE為矩形時,有CF=CE=OB=3,CB∥x軸,利用兩直線平行同位角相等可得∠CBF=∠BAO,又因⊙C與直線AB相切于點F,所以CF⊥AB于點F,利用AAS可知△CBF≌△BAO,所以CB=AB=5,即點C的坐標(biāo)為(-5,3);
(2)因為點C(m,n)是第二象限內(nèi)任意一點,以點C為圓心的圓與x軸相切于點E,與直線AB相切于點F,若⊙C與y軸相切于點D,可分別連接CE、CF、CD,則由切線長定理得AF=AE,BF=BD,OD=OE,所以AE=(AB+OA+OB)=6,又因由切線性質(zhì)定理得,CE⊥x軸于點E,CD⊥y軸于點D,所以四邊形CEOD為矩形,又因為CE=CD,所以四邊形CEOD為正方形,所以O(shè)E=CE=r=AE-OA=6-4=2;
(3)因為點C(m,n)是第二象限內(nèi)任意一點,以點C為圓心的圓與x軸相切于點E,與直線AB相切于點F,所以可延長EC交AB于G,連接CF,則CF=CE=n,因為⊙C與x軸相切于點E,所以GE⊥AE于點E,EG∥y軸,∠CGF=∠OBA,所以可證△FCG∽△OAB,,即CG=n,又因GE=CG+CE==n,AE=OA+OE=4-m,利用tan∠EAG=tan∠BAO,即可得到關(guān)于m、n的關(guān)系式=,整理即可;
(4)若三角形OEF是等邊三角形,則有∠EFO=60°,∠CEF=∠CFE=30°,∠CGF=90°-∠GCF=30°,由(3)可知∠CGF=∠OBA,而tan∠OBA≠tan30°,所以產(chǎn)生了矛盾,即三角形OEF不是等邊三角形.
解答:解:(1)如圖1,當(dāng)x=0時,y=3;當(dāng)y=0時,x=4
∴A(4,0),B(0,3),
∴OA=4,OB=3,AB=5,
連接CF,
當(dāng)四邊形OBCE為矩形時,有CF=CE=OB=3,CB∥x軸,
∴∠CBF=∠BAO
∵⊙C與直線AB相切于點F,
∴CF⊥AB于點F
∴∠CFB=∠BOA,
又∵CF=OB,
∴△CBF≌△BAO,
∴CB=AB=5,
∴點C的坐標(biāo)為(-5,3);

(2)如圖2,連接CE、CF、CD,
∵⊙C與x軸、y軸、AB分別相切于E、D、F,
∴由切線長定理得AF=AE,BF=BD,OD=OE,
∴AE=(AB+OA+OB)=6,
由切線性質(zhì)定理得,CE⊥x軸于點E,CD⊥y軸于點D
∴四邊形CEOD為矩形,
又∵CE=CD,
∴矩形CEOD為正方形,
∴OE=CE=r,
∵OE=AE-OA=6-4=2,
∴⊙C的半徑為2;

(3)如圖1,延長EC交AB于G,連接CF,則CF=CE=n,
∵⊙C與x軸相切于點E,
∴GE⊥AE于點E,
∴EG∥y軸,
∴∠CGF=∠OBA,
又由(1)得∠GFC=∠BOA=90°,
∴△FCG∽△OAB,

∴CG=n,
又∵GE=CG+CE==n,
又∵AE=OA+OE=4-m,
∴在Rt△AEG中,tan∠EAG==,
在Rt△AOB中,tan∠BAO=,
=,
∴m=4-3n;

(4)不能.
∵∠CGF=∠OBA,而tan∠OBA≠tan30°,
∴產(chǎn)生了矛盾,即三角形OEF不是等邊三角形.
點評:本題需仔細(xì)分析題意,結(jié)合圖形,利用相似三角形、切線的性質(zhì)即可解決問題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:2005年全國中考數(shù)學(xué)試題匯編《反比例函數(shù)》(05)(解析版) 題型:解答題

(2005•沈陽)如圖,已知直線y1=x+m與x軸、y軸分別交于點A、B,與雙曲線(x<0)分別交于點C、D,且C點的坐標(biāo)為(-1,2).
(1)分別求出直線AB及雙曲線的解析式;
(2)求出點D的坐標(biāo);
(3)利用圖象直接寫出:當(dāng)x在什么范圍內(nèi)取值時,y1>y2?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2005年全國中考數(shù)學(xué)試題匯編《一次函數(shù)》(05)(解析版) 題型:解答題

(2005•沈陽)如圖,Rt△OAC是一張放在平面直角坐標(biāo)系中的直角三角形紙片,點O與原點重合,點A在x軸上,點C在y軸上,OC=,∠CAO=30度.將Rt△OAC折疊,使OC邊落在AC邊上,點O與點D重合,折痕為CE.
(1)求折痕CE所在直線的解析式;
(2)求點D的坐標(biāo);
(3)設(shè)點M為直線CE上的一點,過點M作AC的平行線,交y軸于點N,是否存在這樣的點M,使得以M、N、D、C為頂點的四邊形是平行四邊形?若存在,請求出符合條件的點M的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2010年四川省成都市武侯區(qū)中考數(shù)學(xué)一模試卷(解析版) 題型:解答題

(2005•沈陽)如圖,已知直線y1=x+m與x軸、y軸分別交于點A、B,與雙曲線(x<0)分別交于點C、D,且C點的坐標(biāo)為(-1,2).
(1)分別求出直線AB及雙曲線的解析式;
(2)求出點D的坐標(biāo);
(3)利用圖象直接寫出:當(dāng)x在什么范圍內(nèi)取值時,y1>y2?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2005年遼寧省沈陽市中考數(shù)學(xué)試卷(課標(biāo)卷)(解析版) 題型:解答題

(2005•沈陽)如圖,Rt△OAC是一張放在平面直角坐標(biāo)系中的直角三角形紙片,點O與原點重合,點A在x軸上,點C在y軸上,OC=,∠CAO=30度.將Rt△OAC折疊,使OC邊落在AC邊上,點O與點D重合,折痕為CE.
(1)求折痕CE所在直線的解析式;
(2)求點D的坐標(biāo);
(3)設(shè)點M為直線CE上的一點,過點M作AC的平行線,交y軸于點N,是否存在這樣的點M,使得以M、N、D、C為頂點的四邊形是平行四邊形?若存在,請求出符合條件的點M的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2005年遼寧省沈陽市中考數(shù)學(xué)試卷(大綱卷)(解析版) 題型:解答題

(2005•沈陽)如圖,已知直線y1=x+m與x軸、y軸分別交于點A、B,與雙曲線(x<0)分別交于點C、D,且C點的坐標(biāo)為(-1,2).
(1)分別求出直線AB及雙曲線的解析式;
(2)求出點D的坐標(biāo);
(3)利用圖象直接寫出:當(dāng)x在什么范圍內(nèi)取值時,y1>y2?

查看答案和解析>>

同步練習(xí)冊答案